GNU Jitter workshop

Written by Luca Saiu
https://ageinghacker.net

The author places this handout into the public domain,
up to the extent of the applicable law.

GNU Hackers’ Meeting 2022 Version 1.1, last updated on October 3rd 2022

https://www.gnu.org/ghm/2022/#workshop izmir7 October 274 2022

1 The Izmir language

The fzm_ir language is a very simple untyped' language with integer values and global variables.
The Izmir language is designed to be easy to compile. The code linked from https://wuw.gnu.org/
ghm/2022/#workshop contains a working parser, and is designed to be completed with:

e a compiler generating IzmirVM code;
e a working fzmirVM virtual machine, generated by Jitter.

The build system is already given and does not need to be modified.

1.1 Izmir syntax

The Izmir langauge features expressions and statements: an expression serves to compute a value: every
expression one result. A statement does not compute a result, but has an effect: either changing the
value of a variable or printing a value.

An Izmir-language program is a sequence of statements.

1.1.1 Expressions

Let n be an integer number such as 3, -1 or 42.
Let b be the Boolean constant true or false.
Let x be a variable name such as x, y or foo.

Any number is an expression:

ell=n

Any Boolean constant is an expression:
ex=1b
Notice that Boolean constants are effectively integers, and can be freely mixed and combined with them.

Any variable is also an expression:
en=2x

Given two expressions, their sum is an expression:
ex=e +e

The same holds for subtraction, multiplication, division and remainder:

en=¢ - e
en=¢ * e
ex=¢ / e

IThere is no difference between integers and Booleans: an expression such as false + 3 is considered to be correct.

ex=¢e¢h e

Given one expression its negative version is also an expression:
en=-¢€

Boolean constants (true and false) are expresssions:

We can also use logic operators to build expressions. Given an expression its logical negation is also
an expression:
e:=not e

Given two expression their logical conjunction (logical “and”) and logical disjunction (logical “or”) are
also expressions:
e:=¢ and e
enx=e or e

Comparison operators between integers build Booleans values. Comparison operators are also used
to build expressions:
n=e = e
n=e = e
n=e < e
n=e > e
n=e <=e€
n=e >= €

x o 0o 0o 0 0

1.1.2 Statements

The empty statement skip, which does nothing, is a statement:
s 1= skip;

The assignment statement, which evaluates an expression and assigns it to a variable, is a statement:
su=1x := e;

The printing statement, which evaluates an expression and prints it to the standard output, is a
statement:
s 1= print e;

Given two statements, their sequential composition (which means executing one after the other) is
also a statement:
su=28; S;

Given an expression and a statement we can build from them a while loop by using the expression as
the guard and the statement as the body: the while statement execution consists in executing the body
repetedly, as long as the guard evaluates to a true result:

s ::=while e do s end;

1.2 Compilation rules of the Izmir into the IzmirVM virtual machine

The style of compilation presented here is compositional: compiling a language phrase consists in com-
piling all of its subphrases, plus occasionally some additional work.

1.2.1 Compiling expressions

We compile a constant by pushing it onto the stack:
[n] = pushconstant n

[true] = pushconstant 1

[false] = pushconstant 0

If the variable x is held in the register r, we compile the expression x by pushing the value of the
register r,:
[x] = pushregister r,

Unary-operator expressions are compiled by first compiling the sub-expression, with one more instruc-
tion after it; the one instruction after it pops one element from the stack and pushes another element in
its place:

[- €] = [e]; unaryminus
[not e] = [e]; not

Binary-operator expressions are compiled by first compiling the left sub-expression, then compiling
the right sub-expression, and finally emitting one more instruction after them; the one instruction after
them pops two elements from the stack and replaces them with a new element, which is the result of
some computation:

[ex + e2] = [ex]s [e2]; plus

[er - e2] =[e1]; [ez2]; minus

[er * ea] = [e1]s [e2]; times

[[61 / 62]] = [[611]; [[621]; divided

[er % e2] =[e1]; [ez]; remainder
[er = e2] = [e1]; [ez2]; equals

[er '= es] =[e1]; [ez2]; different
[er < e2] =[e1]; [ez2]; less

[er > ea] = [e1]s [ez2]; greater

[er <= e2] = [ei1]; [ez2]; lessorequal
[er >= es] = [e1]; [e2]; greaterorequal

1.2.2 Compiling statements

The translation of an empty statement is empty:
[skip]

The translation of a printing statement consists in first translating the expression, then emitting a
print instruction that pops the result and prints it:
[print €]
= [el

print

The translation of an assignment to a variable x held in a register r, consists in first translating the
expression, then popping the result into the register:

[x := €]
- [l

pop 7z

The translation of the sequential composition of two statements is the translation of the first statement
followed by the translation of the second statement:
[s15 s2]
= [s1]
[s2]

The translation of a while loop is as follows:
[while e do s end;]
=b $check
$beginning:
[s]
$check:

[e]

bnz $beginning

The labels shown here as $beginning and $check must be fresh (in the sense of never previously
used).

1.2.3 Compiling programs

A program is compiled by compiling each statement inside it, one after the other.

