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1 The Izmir language

The fzm_ir language is a very simple untyped' language with integer values and global variables.
The Izmir language is designed to be easy to compile. The code linked from https://wuw.gnu.org/
ghm/2022/#workshop contains a working parser, and is designed to be completed with:

e a compiler generating IzmirVM code;
e a working fzmirVM virtual machine, generated by Jitter.

The build system is already given and does not need to be modified.

1.1 Izmir syntax

The Izmir langauge features expressions and statements: an expression serves to compute a value: every
expression one result. A statement does not compute a result, but has an effect: either changing the
value of a variable or printing a value.

An Izmir-language program is a sequence of statements.

1.1.1 Expressions

Let n be an integer number such as 3, -1 or 42.
Let b be the Boolean constant true or false.
Let x be a variable name such as x, y or foo.

Any number is an expression:

ell=n

Any Boolean constant is an expression:
ex=1b
Notice that Boolean constants are effectively integers, and can be freely mixed and combined with them.

Any variable is also an expression:
en=2x

Given two expressions, their sum is an expression:
ex=e +e

The same holds for subtraction, multiplication, division and remainder:

en=¢ - e
en=¢ * e
ex=¢ / e

IThere is no difference between integers and Booleans: an expression such as false + 3 is considered to be correct.



ex=¢e¢h e

Given one expression its negative version is also an expression:
en=-¢€

Boolean constants (true and false) are expresssions:

We can also use logic operators to build expressions. Given an expression its logical negation is also
an expression:
e:=not e

Given two expression their logical conjunction (logical “and”) and logical disjunction (logical “or”) are
also expressions:
e:=¢ and e
enx=e or e

Comparison operators between integers build Booleans values. Comparison operators are also used
to build expressions:
n=e = e
n=e = e
n=e < e
n=e > e
n=e <=e€
n=e >= €
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1.1.2 Statements

The empty statement skip, which does nothing, is a statement:
s 1= skip;

The assignment statement, which evaluates an expression and assigns it to a variable, is a statement:
su=1x := e;

The printing statement, which evaluates an expression and prints it to the standard output, is a
statement:
s 1= print e;

Given two statements, their sequential composition (which means executing one after the other) is
also a statement:
su=28; S;

Given an expression and a statement we can build from them a while loop by using the expression as
the guard and the statement as the body: the while statement execution consists in executing the body
repetedly, as long as the guard evaluates to a true result:

s ::=while e do s end;



1.2 Compilation rules of the Izmir into the IzmirVM virtual machine

The style of compilation presented here is compositional: compiling a language phrase consists in com-
piling all of its subphrases, plus occasionally some additional work.

1.2.1 Compiling expressions

We compile a constant by pushing it onto the stack:
[n] = pushconstant n

[true] = pushconstant 1

[false] = pushconstant 0

If the variable x is held in the register r, we compile the expression x by pushing the value of the
register r,:
[x] = pushregister r,

Unary-operator expressions are compiled by first compiling the sub-expression, with one more instruc-
tion after it; the one instruction after it pops one element from the stack and pushes another element in
its place:

[- €] = [e]; unaryminus
[not e] = [e]; not

Binary-operator expressions are compiled by first compiling the left sub-expression, then compiling
the right sub-expression, and finally emitting one more instruction after them; the one instruction after
them pops two elements from the stack and replaces them with a new element, which is the result of
some computation:

[ex + e2] = [ex]s [e2]; plus

[er - e2] =[e1]; [ez2]; minus

[er * ea] = [e1]s [e2]; times

[[61 / 62]] = [[611]; [[621]; divided

[er % e2] =[e1]; [ez]; remainder
[er = e2] = [e1]; [ez2]; equals

[er '= es] =[e1]; [ez2]; different
[er < e2] =[e1]; [ez2]; less

[er > ea] = [e1]s [ez2]; greater

[er <= e2] = [ei1]; [ez2]; lessorequal
[er >= es] = [e1]; [e2]; greaterorequal

1.2.2 Compiling statements

The translation of an empty statement is empty:
[skip]

The translation of a printing statement consists in first translating the expression, then emitting a
print instruction that pops the result and prints it:
[print €]
= [el

print

The translation of an assignment to a variable x held in a register r, consists in first translating the
expression, then popping the result into the register:



[x := €]
- [l

pop 7z

The translation of the sequential composition of two statements is the translation of the first statement
followed by the translation of the second statement:
[s15 s2]
= [s1]
[s2]

The translation of a while loop is as follows:
[while e do s end;]
=b $check
$beginning:
[s]
$check:

[e]

bnz $beginning

The labels shown here as $beginning and $check must be fresh (in the sense of never previously
used).

1.2.3 Compiling programs

A program is compiled by compiling each statement inside it, one after the other.



