Pushover

a board game playing program written in GNU epsilon
For epsilon version UNKNOWN, 15 February 2018

Luca Saiu

This is the manual documenting Pushover (for GNU epsilon version UNKNOWN, last
updated on 15 February 2018).

Pushover is a board game playing program written in GNU epsilon and included in its
distribution as a nontrivial programming example, as a compiler benchmark and as an
interesting diversion. Like the rest of GNU epsilon Pushover is free software, distributed
under the GNU General Public License version 3 or later.

Copyright (©) 2016, 2018 Luca Saiu
Written by Luca Saiu

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover texts and with the Back-Cover text being “You have the
freedom to copy and modify this manual, like GNU software.” .

A copy of the license is distributed along with the software, and the text is also
available at http://www.gnu.org/licenses/fdl.html.

http://www.gnu.org/licenses/fdl.html

Table of Contents

1 Introduction.................., 1
1.1 HiStOry o ooet et e 1
1.2 PUIPOSE . o et 2
1.3 LECENSE ..t 3
1.4 Contributing........ .o 3

2 Pushoverrules............. 5
2.1 Theboardo 5
2.2 Valid MOVESottt 5)
2.3 Victory and drawo 7
24 Game theoryot 8

3 Usageguide................. 9
3.1 Player tyPes « oottt e 9
3.2 Command-line options ... 10
3.3 Performance considerations............. ... i 11

4 Implementation................................ 13
4.1 MInImMax . ..ottt 13
4.2 Future development i 13
4.3 Rulechange..... i 13

Chapter 1: Introduction 1

1 Introduction

I had not planned to include the Pushover game in the epsilon distribution before actually
writing it. Now that it exists I am quite happy about it, as it constitutes the first worthy
example of a program written in epsilon which is at the same time nontrivial and not part
of the language implementation itself.

Like the rest of GNU epsilon, Pushover is free software.

1.1 History

Between late 2015 and early 2016 I was in charge of supervising a “tutored project” for
two groups of around twenty first-semester Computer Science students at a technological
university institute near Paris.

The students had about four weeks to implement a board game in C, working in pairs.
The version they had to turn in was for two human players only, without computer play of
any kind.

When first reading the specification I recognized the game as a slight variant of something I
had played once a few years before during a Summer picnic at Parc de Sceaux, on a wooden
set brought along by some friend of a friend.

The problem specification written by Mathieu Lacroix was very clear, and the level of
difficulty appropriate for beginners. Students had to satisfy a strict set of requirements
meant to guide them into writing first the helper functions they were to be needing later.
Everything looked quite sensible.

When I eventually came to see the final work by my first group one Friday afternoon I
felt disheartened. Many students had done badly, never overcoming their initial difficulties
with pointers; a few programs did not even compile, many more failed to work correctly
and almost all crashed when provided with incorrect input.

Walking back home I kept thinking about the problem. It was a neat little game described
very clearly, with simple rules but nontrivial in terms of game complexity. I actually felt
like learning to play the game well, for fun. Even more I wanted to implement something
myself; something more advanced. Could I write a minimax version of it in a couple of
days? And in epsilon, where debugging is still crude and unforgiving? That seemed a
more interesting challenge, and I decided to spend the weekend working on it. Of course
I was not constrained to follow the C specification and at times I used some very different
implementation techniques; for example my move logic is based on recursive procedures
over heap-allocated garbage-collected lists, which are copied off the board data structures
and blitted back on; but my game implements the same rules dictated by the specification.
On Sunday afternoon it was finished: 700 lines of quite clean epsilon code. I would only
add a few minor things later, such as the command-line interface — at the time epsilon had
no support at all for argv, and the option parsing library had to be implemented first.

The next morning I had to see my second project group for its last session. I announced
at the beginning that I would show my computer-playing implementation of the game to
the students who were interested after evaluation, and explain how it worked. Of course
nothing of that was mandatory: everyone was free to leave right after showing me the code
and answering my questions.

Even knowing from the beginning that it was stronger (students are grouped by grade) I

2 Pushover UNKNOWN

was quite positively impressed by my second group, which did much better than the first.
So I was in a particularly good mood when I started explaining minimax on the whiteboard
to the small bunch of students who had remained until the end. Then, seeing the computer
beat me in a quick game (even despite my blunders) and play against itself raised expres-
sions of wonder and a few ooohs — Those are the best moments about teaching. At some
point another little crowd of students who had left before quietly came back into the room.
At my interrogative expression they demanded to see the computer playing program I had
promised. I was more than happy to reuse my game tree drawing still on the whiteboard
to speak again about minimax, and then show the program once more. Without explaining
the epsilon code I rapidly showed what it looked like, just to convey the idea that it was
not overly long or complicated.

A few students remained much longer, deeply fascinated, asking questions about program-
ming and languages.

Some days later I had a short discussion with Mathieu about introducing this kind of
more advanced problems as optional tasks for the best students: we teachers could have
shown something like what I did right at the beginning of the first session. Possibly. We did
not come to a satisfactory answer, as it is not easy to motivate promising beginners without
scaring off the weaker majority at the same time. Anyway I am glad to have followed my
intuition showing the minimax program. There was some real beauty hidden right behind
the beginner problem, needing just to be pointed at.

The original French specification named the game “Push Over”. The French language
tends to discourage neologisms and compounds but I feel no need to follow the example in
English; therefore my version of the game will simply be Pushover. The only difference in
rules with respect to the original specification is that in my version Black always plays the
first move — which player began was not stated in the original. Apart from that for all
practical purposes Pushover is the same game as “Push Over”.

I wish to thank Mathieu for his nice project specification which inspired me to implement
the game myself. His web page, also including the specification in French, is http://
www-1lipn.univ-paris13.fr/“lacroix. Mathieu told me he found the original idea on
http://jeuxstrategieter.free.fr/Push_over_presentation.php (again, in French).

1.2 Purpose

Born out of a happy coincidence, Pushover is one of the rare instances of a program being
both simple and truly realistic. It can serve at the same time as an example of epsilon
programming and as a benchmark: the program does a considerable amount of computation,
and the current version also generates quite a lot of garbage, stressing the memory system.
Computing the best move is exponential in time, but not in (alive) space.

The program may be optimized (see Section 4.2 [Future development|, page 13) but it
is also useful as it stands as an example of something written quickly with convenience in
mind. Since it can be run deterministically some specific version of it can be used as a
benchmark to track the advances of the epsilon implementation — which currently remains
quite inefficient.

With comparatively small changes Pushover could become a testbed for more or less
advanced epsilon features which are still to come: for example fork-level parallelism would

http://www-lipn.univ-paris13.fr/~lacroix
http://www-lipn.univ-paris13.fr/~lacroix
http://jeuxstrategieter.free.fr/Push_over_presentation.php

Chapter 1: Introduction 3

be easy to exploit, and the system could run without garbage collection using manually
handled memory regions for quick release of large heap memory blocks, in the style of GNU
Libc obstacks (see Section “Obstacks” in The GNU C Library Reference Manual).

And T also find the game quite satisfying to play.

1.3 License

Pushover is free software: you are free to share and change it under the terms of the GNU
General Public License, version 3 or later. A copy of the GNU General Public License
is distributed in the file COPYING along with the software, and the text is also available
at http://www.gnu.org/licenses/gpl.html. There is no warranty, up to the extent
permitted by law.

This Pushover manual is free documentation, and therefore you are free to share and
change it as well. The applicable license for the manual is the GNU Free Documentation
License. A copy is distributed in the file doc/COPYING.DOC in the epsilon sources, and you
can also read it on the web at http://www.gnu.org/licenses/fdl.html.

1.4 Contributing

Pushover is distributed along with GNU epsilon, in the same source archives. As a minor
subproject Pushover does not need its own development infrastructure, and shares the
resources used for epsilon.

Revision-controlled files, bug and issue trackers are available on GNU Savannah; see
https://savannah.gnu.org/projects/epsilon. You can find the Pushover source code
in examples/pushover.e, in the Git repository and the source tarballs. As is the case for
most free software development the preferred communication medium about GNU epsilon
is a mailing list. Discussions about Pushover are on-topic in epsilon lists.

If you have a bug to report or a patch to submit you can write to bug-epsilon@gnu.org;
please include all the relevant information about your system, the software version you are
using and how it was configured and compiled. When you are in doubt whether to include
some detail or not, do.

In case you want to participate in the project development or discuss please make sure to
have read Chapter 4 [Implementation], page 13, and then write to epsilon-devel@gnu.org.
As of early 2016 bug-epsilon is an alias for epsilon-devel and there is no specific “help”
list, but I can easily add more mailing lists should the need ever arise.

I encourage public technical discussion but also believe in respecting privacy. If
for some reason you would rather reach me in private you can use my email address
positron@gnu.org. My personal website is http://ageinghacker.net.

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/fdl.html
https://savannah.gnu.org/projects/epsilon
mailto:bug-epsilon@gnu.org
mailto:epsilon-devel@gnu.org
mailto:positron@gnu.org
http://ageinghacker.net

Chapter 2: Pushover rules 5

2 Pushover rules

The rules for playing Pushover can be learned in a few minutes by a child; with respect to
the complexity of the rules Pushover is even simpler than checkers/draughts. However a
game with simple rules is not necessarily easy to play well, as any chess player can witness.
See also Section 2.4 [Game theory], page 8 for some preliminary discussion of Pushover’s
game complexity.

Pushover is game of two players named Black and White, played on a square board.
Starting from an empty board Black and White take turns pushing one piece of their
color from one of the four edges towards the interior of the board, horizontally or vertically.
Whenever a piece is being pushed onto an already occupied case the previous piece is pushed
along the same direction. If a whole row or column is occupied pushing one further piece
from an edge causes the farthest piece to fall off (or to be ejected from) the opposite edge.
A player is allowed to eject pieces of her own color, but not her opponent’s.

The game ends when one or more rows or columns are completely occupied by pieces
of the same color. At that point the player having more completely occupied rows and
columns of her own color wins; if the sum of the number of fully occupied rows and columns
is the same for each player, the game ends in a draw.

By convention Black moves first.

2.1 The board

The board is a square of cases having sides of length n cases, for some predetermined value
of n in the range from 3 to 9, both extremes included. Each case in the board may be
empty or occupied by one piece of either color.

123
1. ..
2. ..
3. ..

Figure 2.1: The initial position of a size-3 Pushover board, showing no pieces. The first
move by Black will fill any one case in the perimeter; the central case is not reachable by
the first move.

A board has four edges: top, bottom, left and right. A board is drawn as shown in
Figure 2.1 for size n = 3. Rows and columns are numbered from 1 to n included, with the
origin top-left: then row 1 corresponds to the top edge, row n to the bottom edge, column
1 to the left edge and column n to the right edge.

Figure 2.1 shows an empty board, where every case is represented as a dot ‘.’. When
some cases are occupied, for example as in Figure 2.3, Black pieces are represented as ‘B’
and White pieces as ‘W. In the program output the characters ‘B’ and ‘W may appear in
two distinct colors. We call position any specific board configuration such as the one in
Figure 2.1 or the left one in Figure 2.3.

2.2 Valid moves

The game starts with Black moving in an empty position. After Black plays her move it is
White’s turn and then again Black’s, with the two players always playing one move each

6 Pushover UNKNOWN

until the game ends. A move consists of pushing one piece of the player’s color inwards from
an edge. The move can be written as two characters, the first representing the edge (‘T’ for
top, ‘B’ for bottom, ‘L’ for left or ‘R’ for right) and the second a row or column number. For
example pushing a piece downwards from the top edge into the second column is written as
T2; the move to push a piece into the first row from the right edge towards the left is R1.

123 123
1. .. 1. ..
2B . . 2WB .
3 3. ..

Figure 2.2: Left: the current position right after Black has played L2 in the initial
position, on a board of size 3. If White responds with L2, yielding the position shown on
the right, the Black piece is pushed to the right by one case to make place. If instead White
responds to the first move by Black in any other way the Black piece is not moved as the
result of White’s move.

Whenever the case into which a player moves is already occupied, one piece is pushed to
make place, in the same direction of the player’s move (see Figure 2.2). This displacement of
the outermost piece may cause in its turn other displacements in the same row or column,
until either the last displaced piece is pushed into a previously empty case, or the last
displaced piece is ejected from the board and falls off the edge opposite to the insertion
edge, as in Figure 2.3.

1234 1234
1B . W. 1B . W
2W. . W 2B . . W
3B .BW 3W.BW
4B . 4B .

Figure 2.3: Black plays T1 on the position shown on the left, ejecting a Black piece out
of the bottom edge. The resulting position is shown on the right.

A player is allowed to eject a piece of her own color but not a piece of her opponent’s
color, as shown in Figure 2.4. A move which would cause the ejection of an opponent’s
piece is simply not allowed to take place, and can not be executed “partially” or in modified
form. The Pushover program will stop a player attempting to perform an invalid move: for
example if Black attempted to play L2 in the situation of Figure 2.4, the software would
simply recognize the move as impossible and ask the player to enter a different one.
Causing a piece to be displaced without it being ejected is permitted, independently from
the color of the displaced piece: the color restriction only applies to ejection.

34

= W =
W w N

Ww

B W N e

Figure 2.4: Black is not allowed to play L2 in the shown position, as in doing so she
would eject a white piece from the right edge. Each player is allowed to eject her own pieces
but not her opponent’s.

Ejection only happens when the involved row (for a push from the left or right edge) or
column (for a push from the top or bottom edge) is completely occupied: if at least one

Chapter 2: Pushover rules 7

free case exists in the row or column then a hole will be filled and no place will fall off the
board, as shown in Figure 2.5. In every case the free case in the involved row or column
which is closest to the edge from which the player is pushing will be occupied.

12345 12345
1B .W.W 1BBW.W
2 .. 0. 2 .00 .
3 . B 3 B
4 4
5. 5.

Figure 2.5: Black plays L1 in the position shown on the left. By doing this she pushes
her own piece to the right, filling a hole. The new inserted piece is on the top-left corner.
No other piece is displaced.

2.3 Victory and draw

Whenever a move yields a position where at least one row or one column is completely
occupied by pieces of the same color, the game ends. At that point the balance of colors
determines which player is the winner or if the game ends in a draw.

The Black final score is the sum of the number of rows completely occupied by Black
pieces and the number of columns completely occupied by Black pieces. For this purpose
every row or column counts as one point: the fact that pieces are aligned horizontally
or vertically has no consequence. The White final score is determined in the same way,
counting how many rows and columns are completely occupied by White pieces. If the
Black final score is greater than the White score, then Black wins the game. If the White
score is greater then White wins. If the two final scores are equal the game is a draw.

It is possible that a player plays a move yielding a winning state for the other by mistake,
as in Figure 2.8. Such a blunder does not constitute an invalid move.

3 3

S w N e
= W =
oo N

W ===
w N =
= W =
W W N
== = b

. B 4 .BBW

Figure 2.6: Starting from the left position White plays R4 and wins, yielding the right
position in which Black has zero points and White has one full column (4).

Forcing a draw may be the best option in some game position, as an alternative to losing.

1234

e
N

S0 w

W W= -

4

S w N e
W= -
= w = -
Zw=w
w W= -
S w N e
W= -
= w = -

Figure 2.7: Black forces draw by playing T3 in the left position, which yields the right
position where the two players have one full row each (2 and 3).

It is uncommon through not impossible that the final score is different from 0 for both
players in a non-drawn game, as shown in Figure 2.8. Draws with both scores greater than
1 appear to be much more common.

8 Pushover UNKNOWN

12345 12345
1WWW.B 1WWW . W
2BBBBW 2BBBBB
3. .. B 3 .. W
4 BBBBW 4 BBBBB
S5WWWW. BWWWWW

Figure 2.8: A blunder resulting in a more complex victory state: White plays T5 on the
left position, yielding the right position which is winning for Black: in the right position
Black has two full rows (2 and 4) while White only has one (5).

2.4 Game theory

Pushover is a perfect-information, deterministic sequential combinatorial game. Any notion
of game complexity for combinatorial games depends on the game branching factor and its
game-tree depth.

FIXME: the following paragraph is not completely exact. The initial complexity is less
than 4n: the board is empty, therefore pushing “into an angle” has the same effect indepen-
dently from the direction. This changes later, when rows and columns fill.

The branching factor for Pushover is maximum at the beginning of a game, being exactly
4n with a board of size n, decreasing near endgame. Games can last at least tens to hundreds
of moves, and the game length grows as the board size grows. Branching factors for other
combinatorial games are usually more variable; chess has a branching factor around 35 on
average.

Without having developed any formal analysis (estimating typical values for either the
game depth or the branching factor at a given depth is nontrivial) I conjecture that Pushover
becomes more complex than chess for boards of size 7-8, and possibly already at size 6.

If empirical observation of computer vs. computer games (see [-—tournament], page 10)
is to be trusted Black enjoys a considerable advantage on smaller boards, which decreases
as the board size increases.

Most game theory considerations are moot when considering the current implementation,
which is sequential and inefficient even when compiled due to a combination of a naif
compiler, suboptimal algorithms and a memory system fundamentally inadequate to collect
short-lived data generated at a fast rate. The computer player uses a simple minimax
algorithm without a-8 pruning or any heuristic. All of this in practice limits analysis depth
to a few plies.

Chapter 3: Usage guide 9

3 Usage guide

The Pushover program has a terminal interface. As of early 2016 it uses ANSI terminal
escape sequences to display pieces in different colors by default, even if it would be rea-
sonable to check that TERM environment variable and use escapes only where supported, or
possibly build upon some higher-level abstraction. Escape sequences can be disabled with a
command-line option (see [--no-color|, page 10). The GNU Readline (see GNU Readline
Library) library is supported if epsilon has been configured to use it.

The Pushover program is a loop playing every move of a game — or more than one
in the case of tournaments; see [-—tournament]|, page 10. At the beginning of each turn
the computer displays the current position; then a move is played until a final position is
reached.

3.1 Player types

Being conceived in a quite orthogonal way, the program supports different types of games:
human versus human, human versus computer, and computer versus computer. Computer
versus computer games are non-interactive, and the user can simply watch games unfold;
this is particularly useful to compare how effective the different kinds of algorithms are —
see [-—tournament], page 10.

Each of the two players may be of one of the following three types:

e human, in which case the game is interactive. The computer displays the list of every

valid move in the current position clearly showing which player is moving in the current
turn, and waits until the user types in a move in the notation of [move-notation|, page 6,
followed by Enter. Since no ambiguity is possible the program also accepts edge letters
in lower case, as a convenience. If the user enters an invalid move the computer asks
again until she eventually types in a valid move which is then played, and control is
passed to the other player unless the game is over. At the prompt a human player can
also quit the program by typing C-d on an empty line.
A human player may optionally benefit from computer hints, computed with the min-
imax algorithm described right below. If hints are enabled then the computer searches
for an optimal move at the specified depth in plies, and presents it to the user; the user
is then free to follow the computer suggestion or reject it and play a different move.

e minimax, a straightforward implementation of the classical algorithm without
a-f pruning or any heuristic. Analysis depth may be specified in plies, from 1
to 9 included — a depth of 9 plies being already impractical with the current
implementation. The algorithm is exponential in time, but not in space.

In minimax play the computer normally chooses a random move within the set of
moves which are considered optimal by the algorithm, but computer play can also be
made deterministic — in which cases the computer always plays the first optimal move
according to some fixed order.

e dumb, which consists in considering all valid moves as optimal and playing any one
chosen at random or, in deterministic mode, the first one.

Dumb playing may be of some use for learning the rules of the game and for testing. It
comes in handy for benchmarking the algorithm used by another computer player and

10 Pushover UNKNOWN

I may possibly use it for developing other algorithms in the future, to compare against
a baseline.

Two deterministic algorithms played against one another are prone to enter a game
loop, endlessly playing the same sequence of moves; in rare circumstances nondeterministic
algorithms may enter a game loop as well, for example when the set of optimal moves is a
singleton for two consecutive plies, and the second move yields the same position as before
the first move. The best way to solve this problem would be to introduce a new rule in the
spirit of the threefold repetition rule in chess; see Section 4.2 [Future development|, page 13.

3.2 Command-line options

The pushover program has no non-option arguments: every argument it recognizes is an
option, currently always in the long GNU style (see Section “Command-Line Interfaces” in
The GNU Coding Standards).

Every option taking a parameter, shown below with a ‘=’ sign followed by a parameter
placeholder, may be provided either as a single argument including the ‘=’ sign followed by
the parameter, or as two separate arguments without the ‘=’ sign: for example the program
will indifferently accept ‘--black=m3n’ and ‘--black m3n’.

If the same option is specified multiple times with different parameters the last parameter
will take precedence, which may be convenient for shell aliases.

No option is mandatory.

The Pushover program accepts the two standard GNU options:

--version
Print version information and legal notices, then exit successfully.

--help Print a short summary of command-line syntax explaining every option, then
exit successfully.

The following option affects board drawing:

--no-color
Display game positions and player names in a single color, without outputting
any terminal escape sequence. If the option is not specified then the program
uses ANSI terminal sequences; this should probably be changed so that the
program only uses such sequences on supported terminals, according to the
value of the TERM environment variable.

The following two options control game parameters:

--size=n Play on a board of size n. The default board size used when the option is not
specified is n = 4.

-—tournament=n
Instead of a single game play a tournament of n games one after another, at the
end printing statistics about Black victories, White victories and draws. The
statistics format is as follows:

Chapter 3: Usage guide 11

Score over 100 games (size 4):
* Black (minimax 4-plies deep): 267
* White (minimax 4-plies deep): 18Y%
* Draws: 567,
Tournament mode is only enabled for n > 1; when the value of n is zero or

negative only one game is played, with no final statistics. Tournament mode is
off by default.

The last two options below, likely the most commonly used, determine the player type for
each side:

--black=playerspec

--white=playerspec
Specify the player type for Black or for White as shown in Section 3.1 [Player
types|, page 9. The value of playerspec follows a rigid syntax:

e ‘h’ or ‘hn’: human player. When provided n must be a decimal digit from
1 to 9, representing the minimax search depth in plies for hints; hints are
disabled if playerspec is simply ‘h’.

e ‘mn’ or ‘mnd’: minimax computer player with n plies deep search where,
again, n is a single digit between 1 and 9 included. The ‘mnd’ version forces
deterministic play.

e ‘d’ or ‘dd”: dumb computer player, in random (‘d’) or deterministic mode
(‘da’).
The default playerspec is ‘h3’ for --black and ‘m5” for --white: a human

playing as Black with depth 3 hints versus the computer as White with minimax
at depth 5.

When the user only specifies one of --black and --white, only the one corresponding
default is overridden. Combining --black and --white yields different type of games: it
is permitted for the two players to be both human, both computer, or one human and one
computer in either role.

3.3 Performance considerations
777rephrase and expand???
A user in search for a more difficult challenge wishing to play as White against a minimax
player at the same depth as the default opponent could invoke the program as:
pushover --black=m5 --white=h3

A user accepting to tolerate the slowness of a depth 7 search could play against a very
strong computer opponent:

pushover --white=m7

Search time being exponential with a branching factor around 4n on a board of size n, a
one-ply deeper minimax player (or hint) slows down computer play by a factor of roughly
4n, more than one order or magnitude even for n = 3. Deepening search by two plies would
make search run 16n? times slower.

Chapter 4: Implementation 13

4 Implementation

4.1 Minimax

Section 4.2 [Future development], page 13

4.2 Future development

77chess and other games, likely depending on functors??

??breaking game loops by preventing repeated positions, in the spirit of the threefold
repetition rule in chess???

4.3 Rule change

Index

Index

—=blaCK . 11
—=help ... 10
—TN0=COLOT . o it 10
S S e 10
——tournamentiiiii e 10
B V45 o= o « NP 10
——WhIite . e 11
P 5

advantage ... 8
algorithm, computer play 9
alpha-beta pruning........... 8,9
ANSI terminal escape sequence.............. 9, 10
= of OO 1
AW . ettt et e 2

beauty ... 2
begin. ... 5
beginner. 1
5 1 P 1
blunder 2,7
board 5
bottom o 5
branching factor................. .o i 8
bug. ... 3
bug reporting........ ool 3
A 5
Blacko 5, 8

Cmd. e e 9
CASE & o ettt et e e 5
checkers 5
Chess ... o 8
COLOT .+ vt s 7
column. ... 5,7
combinatorial game................ 8
command-line options....................... 1, 10
common GNU options......................... 10
compiler......... ... 8
COMPOUNA .« . v vvee e 2
computer hintl 9
computer player, 9
computer vs. computero oo 9
computer vs. human 9

15
configuration i 5
contributing o 3
CONVEMICIICE . « .« vt vttt 2
G 1
D
depth, analysis......... ...l 8,9
depth, game tree.......... i 8
determinism............. oL 2,9, 11
deterministic game............ oL 8
development................ o i 3
AISCUSS « v v vttt 3
Aot oo 5
draughts.......... ... i 5
Araw ..o e 5,7
dumb. ... 9
dumb player.......... 11
E
€dge . o 5, 6
edge letter i 6, 9
efficiency 2
€JeCt ..o 5,6
eject restriction oL 5, 6
CIPLY .o 5
EI . L 5
English language...........o 2
environment variable.......... oL 9
€SCAPE SEQUENCE . .« et vvtee e et eaee e, 9, 10
Xt v 9
exponential il 2,9
F
fall off ... 5
farthest piece........ ..o 5
fascination........o i i 2
final position ...t 7
final score i 7
rst MOVe ..ottt e 5, 6
forbidden move o i 6
forcing draw i 7
fork-based parallelism.......................... 2
Franceo 1,2
free documentationl 3
free software il 1,3
French language ...t 2
future development 13

G

game complexity...........ol 8

16

game theory....... il 8
game tree....... ... 2,8
garbage collection................. oL 1
garbage collector. 8
G et 3
GUHDC . o 2
GNU C Library. ..o, 2
GNU Free Documentation License 3
GNU General Public License.................... 3
GNU Readline.........cooooviiiiiiiiin. 9
GNU, common optionsccovvuue.... 10

H

helper function 1
heuristicoo i i 8,9
hint ... 9
history ... 1
hole ... 6
how toplay.o 5
human player............. ... il 9, 11
human vs. computer................. 9
human vs. human................ o .. 9

I

implementation.............. ... oo 13
impossible move i 6
INAEX . e 15
introduction.............ooiiiiiiiiiiiii . 1
invalid moveo 6

Lacroix, Mathieu............................. 1,2
left .o 5
CONSE . o oot 3
LSt o 1
loop breakingoooiiiiiiiiiia.. 10, 13
loop, game 10
loop, programccoiiiiiiiiiiiiiia.. 9
looping ... 13
LOSS .o e e 5,7
JOWEr CASe ..o vvi e 9

M

mailing listo 3
memory system................. ..o oL 8
TNINIMAX « v e ettt 1,8,9, 13
minimax player........... ..., 11
TIOVE ottt ettt et e e 6, 7,9

neologisme. 2
NO WaITANty . ..oooiiii i 3
non-option arguments 10

Pushover UNKNOWN

obstack....... ..o 2
opponent color. i 5
optimal move.........co i 9
optimizations............ i 2
Options 10

P

patch. 3
perfect informationl 8
performance................. 11
PIECE vttt 5
player type ... 9
playing 5
10 9
POSItion 59
program loop ... i 9
Prompt... ... 9
PUIPOSE .« .ot ettt et ettt e e 2
push...... o 5, 6
Push Over..........oo i 2
Q

QUIL .« 9

TANAOIN .« oottt et e e e 9
Readline......... ..o i i 9
repetition o 13
repetitionrule ool 10, 13
reporting bugs.......... ... o oo 3
right ... 5
TOW .« ettt et e e e e et e e e e e 5,7
rule change....... il 13
TULES .« ot 5

Savannah...........o i 3
SCOTE .« vt ettt et e e et 7
sequential game............ oL 8
size, board....... ... i 5
space complexity ... 2,9
SQUATE . &+ e ettt et e ettt e 5
start. ... 5
statistics, tournament..............o 10
student....... ... 1
suggestion i 9

T

teaching 2
terminal escape sequence.................... 9, 10
terminal interface..............o i 9

Index

TERM . . oot e 9, 10
threefold repetition 10, 13
5 T PP 5
time complexity i 2,9
L7030 T 5
tournament..............ooo 10
BUrn 5
tutored project i 1
U

usage guide. ... 9

17

vV

validmove........... 6
VICEOTY .o 5,7

\%\%

warranty, nNo............. ..o o i 3
WeAKNESS. .ot 10, 13
White ... 5
whiteboard........... L 1,2
WINNINE .o 7
WONAET .« .ottt 2

	Introduction
	History
	Purpose
	License
	Contributing

	Pushover rules
	The board
	Valid moves
	Victory and draw
	Game theory

	Usage guide
	Player types
	Command-line options
	Performance considerations

	Implementation
	Minimax
	Future development
	Rule change

	Index

