
Runtime systems

Programmation Fonctionnelle Avancée
http://www-lipn.univ-paris13.fr/~saiu/teaching/PFA-2010

Luca Saiu
saiu@lipn.univ-paris13.fr

Master Informatique 2ème année, spécialité Programmation et Logiciels Sûrs
Laboratoire d’Informatique de l’Université Paris Nord — Institut Galilée

2010-12-08

Runtime systems

Functional program are very high-level: it’s not obvious how to
implement them.
Complex library support at run time

How do we represent objects in memory?
Think about memory words, bits and pointers

How do we release memory?
The runtime must be written in a low-level language (C,
assembly)

Think of an efficient implementation

Return the given list with 42 prepended, without modifying
anything: let f xs = 42 :: xs;;

What if we call f with a ten-million-element list?
We don’t need to copy anything! We’re just building a very
small structure (one cons) which refers the given one

We should always pass and return pointers to data structures
in memory
Fast and simple!

but when do we destroy lists...?

Anyway we don’t want to allocate in memory small data which
fit in registers: avoid allocation whenever possible

Binary words

Figure: A 32-bit word

Modern machines have 32- or 64-bit words. There are
assembly instructions working efficiently on word-sized data
(arithmetics, load, store)
At the hardware level, memory is untyped : a binary word can
represent an integer, a boolean, a float, some characters, a
pointer1, a sum type element with no parameters...

1Today we ignore internal pointers for simplicity

http://www-lipn.univ-paris13.fr/~saiu/teaching/PFA-2010


Boxed vs. unboxed

boxed: allocate the object in memory, and pass around a
pointer to it
unboxed: pass around the object itself, which is small
(word-sized)

Stack allocation is not enough

int f(int x){
struct big_strict s;
s.q = x;
s.w = g(x, &s);
...
return 42;

}int f(int x){
struct big_strict s;
s.q = x;
s.w = g(x, &s);
...
return 42;

}

s is visible to g. s remains
alive in memory until f
returns, so also the functions
called by g might access it.
When f returns s is
automatically destroyed: its
memory will be reused
LIFO policy implemented
with a stack: push at
function entry, pop at
function exit

Very, very efficient. But
not expressive enough.

Heap allocation and de-allocation

Any reasonable programming language also lets you explicitly create
new objects in memory without following a LIFO policy:
.
.

/* C */
p = malloc(sizeof(int) * 2);
p[0] = 42;
...
free(p);

(* OCaml *)
x :: xs
...
(the memory is freed
automatically)

A heap with free list
A heap is the data structure on which malloc and free are
implemented:

Figure: A 16-word heap with a free list: each unused word in the heap
points to the next one. Red words belong to alive objects.



How to interpret a word-sized datum

Figure: Is this a number, a boolean, a pointer, or maybe an object of
type t = A | B | C, or ...?

1001100010011010100010002 = 1000103210
Number, memory address, or what else?
In general we can’t tell
We could establish a non-standard convention in our runtime
so that all objects are tagged with an encoding of their type

Object headers - I

We can reserve a word for runtime type information at the
beginning of each object:

Figure: The pair (3, false) represented with object headers. The
words shown in red contain some binary encoding of the type.

Object headers - II

Another example with object headers:

Figure: The list 2 :: 3 :: [], also written as [2; 3], with object
headers

Object headers - III

Pros
Easy to understand and implement
One word per object suffices to encode any type

The header can also be a pointer, if needed

Cons
Inefficient: we have to unbox everything



Tagging within a datum word - I
Instead of using a prefix word, we can reserve some bits in a fixed
position within a datum to encode its type. Example (3-bit tag):

000: unique values (booleans, empty list, unit, ...)
001: integer
010: cons
011: character
100: float
101: ref
110: string
111: (not used)

Figure: A 32-bit word with a 3-bit tag. What’s this? The integer 710The
integer 710

Tagging within a datum word - II

Figure: A 32-bit word: 29-bit payload plus 3-bit tag

Pros:
compact: no additional space is used

Cons:
operating on data is harder and possibly slower (think of
adding two tagged integers)

...but we can choose tags in a smart way (any ideas?)

less space available for the datum payload
very few tags available: at most 2n with n tag bits

Tagging within a datum word - Example

Figure: A list with in-word tags

Notice that we have tagged a pointer. Why can we do it?
If heap objects are aligned on word boundary, the rightmost
two (for 32-bit architectures) or three (for 64-bit architectures)
bits are always zero in native pointers.
Aligning on a wider boundary gives us more bits to use for
tagging, but may waste heap space

Alignment: look at the heap again

Figure: Think of the binary representation of pointers to heap objects:
here any pointer will end with 00 (because addresses in radix 10 are
divisible by 4).



Hybrid tagging

In-word tags are more efficient than headers, but we would need
much more than two or three bits... We can find a compromise
.
Use a short in-word tag of two or three bits for the most common
types which we want to keep unboxed or boxed without header,
reserving one value for boxed objects with headers.
.
Example (with two-bit in-word tag):

00 int (unboxed)
01 pointer to cons (boxed, but no header)
10 unique (unboxed)
11 pointer to a boxed object with header

Very efficient if integers and lists are used a lot.

Hybrid tagging – example

Figure: The pair (2, [true; false]), following the convention of the
previous slide. The pair has a header because we didn’t consider it
“common” enough: but integers, conses and unique values (booleans and
the empty list) need no header.

Static typing and tagging

We ignored static typing until now. Does OCaml need runtime
tags?
.
.

Possible bonus if you answer this in a smart way

Automatic memory management

We want to work under the illusion that memory is infinite.
The program just allocates objects, ignoring the problem
Unneeded objects are automatically destroyed by the runtime,
which “wakes up” when needed

Pros:
No dangling pointers
No double free
No (trivial) memory leaks

Cons:
Inefficient.

Mmm. Is it really inefficient?



Automatic memory management — Definitions

At a given time, we call heap objects which will never be used again
by the program semantic garbage.

The runtime system works with roots (processor registers and
stack, global variables): heap objects can only be reached via
pointers from roots, or...
...from other heap objects. For example, many conses refer
other conses

A piece of syntactic garbage is a heap object which can’t be
reached by recursively following pointers starting from roots

Automatic memory management recycles syntactic garbage
Because of deep theoretical reasons it’s impossible to find all
semantic garbage; but recycling syntactic garbage is a
conservative approximation

Automatic memory management — Main approaches

Two main approaches:
Tracing garbage collection (or just garbage collection):

when the memory is full visit the graph of alive objects,
starting from roots;
what we didn’t visit is garbage: destroy it

Reference counting
count the pointers to each object
when an object has zero pointers destroy it

Only two main approaches. But there are many, many, many
variants

History

John McCarthy proposed mark-sweep garbage collection in his
famous 1959 (!) paper introducing Lisp

Figure: John McCarthy in 2006. Photo by null0, released under the “Creative

Commons Attribution 2.0 Generic” license: http://www.flickr.com/photos/null0/272015955/

George E. Collins responded in 1960 by proposing reference
counting as a “more efficient” alternative
Popularly considered inefficient. Many languages have always
been depending on it, but accepted into the mainstream only
in the 1990s

Reference-counting - I

http://www.flickr.com/photos/null0/272015955/


Reference-counting - II Reference-counting - III

Reference-counting problems - I

Very inefficient (one word overhead per object, keeping
counters up-to-date costs more than payload operations)...
...but this is not the main problem

Reference-counting problems - II



Reference-counting problems - III

Figure: Circular garbage is never destroyed!

Reference-counting problems - IV

Figure: This is definitely syntactic garbage; but cyclic objects can’t be
destroyed by the reference counter.

Tracing garbage collection


	Introduction and hardware architecture reminders
	Object representation and runtime typing
	Automatic memory management

