Runtime systems

Runtime systems

Programmation Fonctionnelle Avancée @ Functional program are very high-level: it's not obvious how to
http://www-lipn.univ-paris13.fr/“saiu/teaching/PFA-2010 implement them.
o Complex library support at run time
e How do we represent objects in memory?

Luca Saiu @ Think about memory words, bits and pointers
saiu@lipn.univ-parisi3.fr e How do we release memory?
e The runtime must be written in a low-level language (C,
Master Informatique 2™ année, spécialité Programmation et Logiciels Siirs assem b|y)
Laboratoire d'Informatique de I'Université Paris Nord — Institut Galilée
2010-12-08

Think of an efficient implementation Binary words

Return the given list with 42 prepended, without modifying)]
anything: let f xs = 42 :: xs;; LTI I T I T I IT T ITTTEYREED
o What if we call £ with a ten-million-element list?

@ We don't need to copy anything! We're just building a very
small structure (one cons) which refers the given one

e We should always pass and return pointers to data structures

Figure: A 32-bit word

@ Modern machines have 32- or 64-bit words. There are

in memory) _ _ it _
o Fast and simple! assembly instructions working efficiently on word-sized data
e but when do we destroy lists...? (arithmetics, load, store)
o Anyway we don’t want to allocate in memory small data which @ At the hardware level, memory is untyped: a binary word can

fit in registers: avoid allocation whenever possible represent an integer, a boolean, a float, some characters, a

pointer!, a sum type element with no parameters...

' Today we ignore internal pointers for simplicity

http://www-lipn.univ-paris13.fr/~saiu/teaching/PFA-2010

Boxed vs. unboxed

@ boxed: allocate the object in memory, and pass around a
pointer to it

@ unboxed: pass around the object itself, which is small
(word-sized)

Heap allocation and de-allocation

Any reasonable programming language also lets you explicitly create
new objects in memory without following a LIFO policy:

/* C x/ (*x 0Caml *)
p = malloc(sizeof (int) * 2); X ! XS
pl0] = 42;

(the memory is freed
free(p); automatically)

Stack allocation is not enough

int £(int x){ @ s is visible to g. s remains
struct big_strict s; alive in memory until £
$:4= % returns, so also the functions
s.w = gx, &s); called by g might access it.

@ When f returns s is
automatically destroyed: its
memory will be reused

@ LIFO policy implemented
with a stack: push at

function entry, pop at
function exit

return 42; o Very, very efficient. But
¥ not expressive enough.

return 42;
}int f£(int x){
struct big_strict s;
5.q = X;
s.w = g(x, &s);

A heap with free list

A heap is the data structure on which malloc and free are
implemented:

‘f’z«(fsé

10001080]]
1000 (504

!

-
1900008 o—

1ovo(ol2 o
fooojp ¢
1900/ 1,
160045, [l
000026
(LTS Y
1000(03(
looclogo
1000(044
10001048
1000052
loooj0$k
looo(0g0

Figure: A 16-word heap with a free list: each unused word in the heap
points to the next one. Red words belong to alive objects.

How to interpret a word-sized datum Object headers - |

We can reserve a word for runtime type information at the
beginning of each object:

[Slelelelololololelfole T T [olo[olTTolel NENEEEEST To}ofo)

Figure: Is this a number, a boolean, a pointer, or maybe an object of
type t = A | B | C or..7 [pric | o | « |

A

Lint 7] 3 | [beol [fulse |

e 100110001001101010001000, = 1000103219

") Number, memory addressv or What else? Figure: The pair (3, false) represented Wlth ObjeCt headers. The

, words shown in red contain some binary encoding of the type.
@ In general we can't tell

@ We could establish a non-standard convention in our runtime
so that all objects are tagged with an encoding of their type

Object headers - Object headers - IlI

Another example with object headers:

[con¢ | o [o |

¢ Pros
Lcoar] 1o | ¢ | o Easy to understand and implement
@ One word per object suffices to encode any type
E:j l o The header can also be a pointer, if needed

2
Lt T2 Cons

' ; o Inefficient: we have to unbox everything
m;/ 43 -EJ

Figure: Thelist2 :: 3 :: [], also written as [2; 3], with object
headers

Tagging within a datum word - | Tagging within a datum word - ||
Instead of using a prefix word, we can reserve some bits in a fixed
position within a datum to encode its type. Example (3-bit tag):

@ 000: unique values (booleans, empty list, unit, ...) ‘.
® 001: integer Elelelefelelolof Plolelele loloTelo Tolelelele lo Tolo[o [T fo Jof 1]
@ 010: cons]
® 011: character Figure: A 32-bit word: 29-bit payload plus 3-bit tag
@ 100: float
@ 101: ref
@ 110: string @ Pros:
e 111: (not used) e compact: no additional space is used

e Cons:

o operating on data is harder and possibly slower (think of
Eny adding two tagged integers)

el bbPllRk Rllebllelpl [o]o]O]D [elfoferi] @ ...but we can choose tags in a smart way (any ideas?)

_ . . ' _ o less space available for the datum payload
Figure: A 32-bit word with a 3-bit tag. What's this? Thg . o very few tags available: at most 2" with n tag bits
integer 710 T)

Tagging within a datum word - Example Alignment: look at the heap again

‘f’q(fsé
| Z !} f ﬂ 10001000 m{ﬂ

looo“,o;‘

-
1900(90g o}
pom

tooojolz
[3 II E]] 19000 (¢

1090/9 20

109010, |

. . - 0901926
Figure: A list with in-word tags 100003,
1ooolo3(
tooologo
1000(044

Notice that we have tagged a pointer. Why can we do it? 10001048

10001052

o If heap objects are aligned on word boundary, the rightmost opeiott
two (for 32-bit architectures) or three (for 64-bit architectures)
bits are always zero in native pointers. Figure: Think of the binary representation of pointers to heap objects:

here any pointer will end with 00 (because addresses in radix 10 are
divisible by 4).

@ Aligning on a wider boundary gives us more bits to use for
tagging, but may waste heap space

Hybrid tagging Hybrid tagging — example

In-word tags are more efficient than headers, but we would need
much more than two or three bits... We can find a compromise (‘
Use a short in-word tag of two or three bits for the most common air 2 W @ J
types which we want to keep unboxed or boxed without header, v
reserving one value for boxed objects with headers.
{rve ’I o 1

Example (with two-bit in-word tag):

@ 00 int (unboxed) false ﬂ [1] n

@ 01 pointer to cons (boxed, but no header)

@ 10 unique (unboxed) Figure: The pair (2, [true; falsel]), following the convention of the
previous slide. The pair has a header because we didn't consider it

.. o . “common” enough: but integers, conses and unique values (booleans and
Very efficient if integers and lists are used a lot. the empty list) need no header.

@ 11 pointer to a boxed object with header

Static typing and tagging Automatic memory management

We want to work under the illusion that memory is infinite.
@ The program just allocates objects, ignoring the problem

@ Unneeded objects are automatically destroyed by the runtime,

We ignored static typing until now. Does OCaml need runtime o -
which “wakes up” when needed

tags?
Pros:
@ No dangling pointers

. . . @ No double free
Possible bonus if you answer this in a smart way o
@ No (trivial) memory leaks

Cons:

o Inefficient.
o Mmm. Is it really inefficient?

Automatic memory management — Definitions

At a given time, we call heap objects which will never be used again
by the program semantic garbage.

@ The runtime system works with roots (processor registers and
stack, global variables): heap objects can only be reached via
pointers from roots, or...

o ...from other heap objects. For example, many conses refer
other conses

o A piece of syntactic garbage is a heap object which can't be
reached by recursively following pointers starting from roots
e Automatic memory management recycles syntactic garbage
o Because of deep theoretical reasons it’s impossible to find all
semantic garbage; but recycling syntactic garbage is a
conservative approximation

History

@ John McCarthy proposed mark-sweep garbage collection in his
famous 1959 (!) paper introducing Lisp

Figure: John MCCarthy in 2006 Photo by null0, released under the “Creative

Commons Attribution 2.0 Generic” license: http://www.flickr.com/photos/null10/272015955/

@ George E. Collins responded in 1960 by proposing reference
counting as a "more efficient” alternative

@ Popularly considered inefficient. Many languages have always
been depending on it, but accepted into the mainstream only
in the 1990s

Automatic memory management — Main approaches

Two main approaches:
e Tracing garbage collection (or just garbage collection):
o when the memory is full visit the graph of alive objects,

starting from roots;
e what we didn't visit is garbage: destroy it

@ Reference counting

e count the pointers to each object
e when an object has zero pointers destroy it

@ Only two main approaches. But there are many, many, many
variants

Reference-counting - |

http://www.flickr.com/photos/null0/272015955/

Reference-counting - Il

AV
e
2

L

A

Reference-counting problems - |

o Very inefficient (one word overhead per object, keeping
counters up-to-date costs more than payload operations)...

@ ...but this is not the main problem

L
=
N/
. ")

Reference-counting - Il

oy b Y

(O

g‘l’i

L4
A1

| X
alive
v I ’ I :
¥
1t e
iz
Reference-counting problems - I
(T L
w_ | N

Reference-counting problems - I

bt |-

\z7

*-

l

T 1 | T
}

by -c-o'Jr. (/4
i

D

o
i J

Figure: Circular garbage is never destroyed!

Tracing garbage collection

‘f’ul\'sb

“’]°°‘|o'9"¢. [o
1990(opg| | &—
jloooitoirz. o1
100010 1 |[HRI
1000‘\01(797““
1290102, MW
10001926 | |o—i
1090103) ‘0‘—-5
!opo‘iqu ¢
loog!ol,q o [
toooioqs MMM)
10001048 4
looolo$2 | | o—
100010$¢ r——%’
1o0oogo | _——

;m-ML Libe (4 bit per :L““f’ word)

; [1 [o!o[o]l [1TiTe]o Lolo[l [1[o]o]0]

Reference-counting problems - |V

iy

<

~a

l

o
)

®

e o vQ-:Jr‘ (s
i

[

et

L/

!

Figure: This is definitely syntactic garbage; but cyclic objects can't be

destroyed by the reference counter.

	Introduction and hardware architecture reminders
	Object representation and runtime typing
	Automatic memory management

