
1/37 .

Introduction A test case Elements Assessment

In defence of language as an interface
A statement of the obvious

Luca Saiu
https://ageinghacker.net

positron@gnu.org
GNU Project

GNU Hackers’ Meeting 2022
İzmir, Turkey

October 1st, October 2nd 2022

About these slides: Copyright © Luca Saiu 2022, released under the CC BY-SA 4.0 license.
Updated version, last changed on 2022-10-09. The master copy is at https://ageinghacker.net/talks/

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net
https://ageinghacker.net/talks/
https://ageinghacker.net

2/37 .

Introduction A test case Elements Assessment Am I biased? My claim

About me

Hello, my name is Luca Saiu.

My web site is https://ageinghacker.net

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

2/37 .

Introduction A test case Elements Assessment Am I biased? My claim

About me

Hello, my name is Luca Saiu.

My web site is https://ageinghacker.net

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

2/37 .

Introduction A test case Elements Assessment Am I biased? My claim

About me

Hello, my name is Luca Saiu.

My web site is https://ageinghacker.net

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

3/37 .

Introduction A test case Elements Assessment Am I biased? My claim

Look at me
Can you notice anything?

I am old! Young people usually disagree with me.
I still think I am right.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

4/37 .

Introduction A test case Elements Assessment Am I biased? My claim

Look at me
Can you notice anything?

I am old! Young people usually disagree with me.
I still think I am right.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

5/37 .

Introduction A test case Elements Assessment Am I biased? My claim

Look at me
Can you notice anything?

I am old! Young people usually disagree with me.
I still think I am right.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

5/37 .

Introduction A test case Elements Assessment Am I biased? My claim

Look at me
Can you notice anything?

I am old! Young people usually disagree with me.
I still think I am right.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

5/37 .

Introduction A test case Elements Assessment Am I biased? My claim

Look at me
Can you notice anything?

I am old! Young people usually disagree with me.
I still think I am right.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

5/37 .

Introduction A test case Elements Assessment Am I biased? My claim

Look at me
Can you notice anything?

I am old! Young people usually disagree with me.
I still think I am right.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

6/37 .

Introduction A test case Elements Assessment Am I biased? My claim

My claim for this presentation

Computers are beautiful and complex.

My claim
the best way of harnessing the power of computers is trough a
linguistic interface. No other way will be as effective.

I shall argue my case by showing you an example problem in detail.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

6/37 .

Introduction A test case Elements Assessment Am I biased? My claim

My claim for this presentation

Computers are beautiful and complex.

My claim
the best way of harnessing the power of computers is trough a
linguistic interface. No other way will be as effective.

I shall argue my case by showing you an example problem in detail.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

7/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Test case: generating thumbnails for a photo collection

I have many JPEG images in a directory tree under ~/pictures/.

For every directory D in the tree directly containing pictures I want
to make a new subdirectory of it named D/thumbs/ containing a
scaled-down version of every picture directly in D.
(For example if ~/pictures/foo/bar/quux.jpg exists then we
want a thumbnail for it in ~/pictures/foo/bar/thumbs/: we
can name the thumbnail file
~/pictures/foo/bar/thumbs/quux-thumb.jpg)

Assume that:
every JPEG file has a name ending with “.jpg”, and every
object with such name is actually a JPEG file.
no object named thumbs/ exists in the tree at the beginning.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

7/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Test case: generating thumbnails for a photo collection

I have many JPEG images in a directory tree under ~/pictures/.

For every directory D in the tree directly containing pictures I want
to make a new subdirectory of it named D/thumbs/ containing a
scaled-down version of every picture directly in D.
(For example if ~/pictures/foo/bar/quux.jpg exists then we
want a thumbnail for it in ~/pictures/foo/bar/thumbs/: we
can name the thumbnail file
~/pictures/foo/bar/thumbs/quux-thumb.jpg)

Assume that:
every JPEG file has a name ending with “.jpg”, and every
object with such name is actually a JPEG file.
no object named thumbs/ exists in the tree at the beginning.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

7/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Test case: generating thumbnails for a photo collection

I have many JPEG images in a directory tree under ~/pictures/.

For every directory D in the tree directly containing pictures I want
to make a new subdirectory of it named D/thumbs/ containing a
scaled-down version of every picture directly in D.
(For example if ~/pictures/foo/bar/quux.jpg exists then we
want a thumbnail for it in ~/pictures/foo/bar/thumbs/: we
can name the thumbnail file
~/pictures/foo/bar/thumbs/quux-thumb.jpg)

Assume that:
every JPEG file has a name ending with “.jpg”, and every
object with such name is actually a JPEG file.
no object named thumbs/ exists in the tree at the beginning.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

7/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Test case: generating thumbnails for a photo collection

I have many JPEG images in a directory tree under ~/pictures/.

For every directory D in the tree directly containing pictures I want
to make a new subdirectory of it named D/thumbs/ containing a
scaled-down version of every picture directly in D.
(For example if ~/pictures/foo/bar/quux.jpg exists then we
want a thumbnail for it in ~/pictures/foo/bar/thumbs/: we
can name the thumbnail file
~/pictures/foo/bar/thumbs/quux-thumb.jpg)

Assume that:
every JPEG file has a name ending with “.jpg”, and every
object with such name is actually a JPEG file.
no object named thumbs/ exists in the tree at the beginning.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

8/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

A Unix-style solution

We can solve the test-case problem with Bash.
[luca@moore ~]$

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

9/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

A Unix-style solution

We can solve the test-case problem with Bash.
[luca@moore ~]$ cd pictures
[luca@moore ~/pictures]$

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

10/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

A Unix-style solution

We can solve the test-case problem with Bash.
[luca@moore ~]$ cd pictures
[luca@moore ~/pictures]$ for file in $(find -name ’*.jpg’); do mkdir
$(dirname "$file")/thumbs &> /dev/null; convert "$file" -scale 100

$(dirname "$file")/thumbs/$(basename "$file" .jpg)-thumb.jpg; done

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

11/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Looking at the Bash command in detail

The same shell command, with more whitespace.
for file in $(find -name ’*.jpg’); do

mkdir $(dirname "$file")/thumbs &> /dev/null;
convert \

"$file" \
-scale 100 \
$(dirname "$file")/thumbs/$(basename "$file" .jpg)-thumb.jpg;

done

No real change from the one-line version. What is the most
important program being called in this command?

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

12/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Looking at the Bash command in detail

The same shell command, with more whitespace.
for file in $(find -name ’*.jpg’); do

mkdir $(dirname "$file")/thumbs &> /dev/null;
convert \

"$file" \
-scale 100 \
$(dirname "$file")/thumbs/$(basename "$file" .jpg)-thumb.jpg;

done

The “heart” of this command is the program convert. Is there
any other primitive program used here?

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

12/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Looking at the Bash command in detail

The same shell command, with more whitespace.
for file in $(find -name ’*.jpg’); do

mkdir $(dirname "$file")/thumbs &> /dev/null;
convert \

"$file" \
-scale 100 \
$(dirname "$file")/thumbs/$(basename "$file" .jpg)-thumb.jpg;

done

The “heart” of this command is the program convert. Is there
any other primitive program used here?

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

13/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Looking at the Bash command in detail

The same shell command, with more whitespace.
for file in $(find -name ’*.jpg’); do

mkdir $(dirname "$file")/thumbs &> /dev/null;
convert \

"$file" \
-scale 100 \
$(dirname "$file")/thumbs/$(basename "$file" .jpg)-thumb.jpg;

done

. . . Several other “primitive” programs are run, and do an
important job.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

14/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Looking at the Bash command in detail

The same shell command, with more whitespace.
for file in $(find -name ’*.jpg’); do

mkdir $(dirname "$file")/thumbs &> /dev/null;
convert \

"$file" \
-scale 100 \
$(dirname "$file")/thumbs/$(basename "$file" .jpg)-thumb.jpg;

done

Variables are names bound to values; here we use only one, but
variables are an important linguistic feature.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

15/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Looking at the Bash command in detail

The same shell command, with more whitespace.
for file in $(find -name ’*.jpg’); do

mkdir $(dirname "$file")/thumbs &> /dev/null;
convert \

"$file" \
-scale 100 \
$(dirname "$file")/thumbs/$(basename "$file" .jpg)-thumb.jpg;

done

There are ways of combining commands to make larger commands:
looping, sequencing, inserting the output of another command.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

16/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Making the command nicer

The command can be made more readable with more variable
definitions.

for file in $(find -name ’*.jpg’); do
directory=$(dirname "$file")/thumbs;
mkdir "$directory" &> /dev/null;
thumbfile="$directory/"$(basename "$file" .jpg)-thumb.jpg;
convert \

"$file" \
-scale 100 \
"$thumbfile";

done

Look how readable the convert invocation is now!
Are we happy with the command now? Let us make it reusable.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

16/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Making the command nicer

The command can be made more readable with more variable
definitions.

for file in $(find -name ’*.jpg’); do
directory=$(dirname "$file")/thumbs;
mkdir "$directory" &> /dev/null;
thumbfile="$directory/"$(basename "$file" .jpg)-thumb.jpg;
convert \

"$file" \
-scale 100 \
"$thumbfile";

done

Look how readable the convert invocation is now!
Are we happy with the command now? Let us make it reusable.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

16/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Making the command nicer

The command can be made more readable with more variable
definitions.

for file in $(find -name ’*.jpg’); do
directory=$(dirname "$file")/thumbs;
mkdir "$directory" &> /dev/null;
thumbfile="$directory/"$(basename "$file" .jpg)-thumb.jpg;
convert \

"$file" \
-scale 100 \
"$thumbfile";

done

Look how readable the convert invocation is now!
Are we happy with the command now? Let us make it reusable.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

16/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Making the command nicer

The command can be made more readable with more variable
definitions.

for file in $(find -name ’*.jpg’); do
directory=$(dirname "$file")/thumbs;
mkdir "$directory" &> /dev/null;
thumbfile="$directory/"$(basename "$file" .jpg)-thumb.jpg;
convert \

"$file" \
-scale 100 \
"$thumbfile";

done

Look how readable the convert invocation is now!
Are we happy with the command now? Let us make it reusable.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

17/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Now look carefully. . .

Take the command. . .

for file in $(find -name ’*.jpg’); do
directory=$(dirname "$file")/thumbs;
mkdir "$directory" &> /dev/null;
thumbfile="$directory/"$(basename "$file" .jpg)-thumb.jpg;
convert \

"$file" \
-scale 100 \
"$thumbfile";

done

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

18/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

Now look carefully. . .

. . . Indent it a little to the right. . .

for file in $(find -name ’*.jpg’); do
directory=$(dirname "$file")/thumbs;
mkdir "$directory" &> /dev/null;
thumbfile="$directory/"$(basename "$file" .jpg)-thumb.jpg;
convert \

"$file" \
-scale 100 \
"$thumbfile";

done

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

19/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

This is called abstraction

. . . And wrap it into a function.
make-thumbs-in () {

cd "$1";
for file in $(find -name ’*.jpg’); do

directory=$(dirname "$file")/thumbs;
mkdir "$directory" &> /dev/null;
thumbfile="$directory/"$(basename "$file" .jpg)-thumb.jpg;
convert \

"$file" \
-scale 100 \
"$thumbfile";

done
}

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

20/37 .

Introduction A test case Elements Assessment The test case problem The test case solution

With abstraction we make new “primitive” commands

Thanks to abstraction we have now added one new command in
our language. We can just write:

make-thumbs-in /var/www/gallery

as if make-thumbs-in were an ordinary “primitive”.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

21/37 .

Introduction A test case Elements Assessment

From Structure and Interpretation of Computer Programs

[Abelson et al., 1996] §1.1 {“The Elements of Programming”}
Every powerful language has three mechanisms [. . .]:

primitive expressions which represent the simplest entities the
language is concerned with,
means of combination, by which compound elements are built
from simpler ones, and
means of abstraction, by which compound elements can be
named and manipulated as units.

(This text is called “The Wizard Book”, after its cover picture;
highly recommended. Look at the bibliography at the end.)

I claim that this characterisation must be extended to any
computer-human interface.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

21/37 .

Introduction A test case Elements Assessment

From Structure and Interpretation of Computer Programs

[Abelson et al., 1996] §1.1 {“The Elements of Programming”}
Every powerful language has three mechanisms [. . .]:

primitive expressions which represent the simplest entities the
language is concerned with,
means of combination, by which compound elements are built
from simpler ones, and
means of abstraction, by which compound elements can be
named and manipulated as units.

(This text is called “The Wizard Book”, after its cover picture;
highly recommended. Look at the bibliography at the end.)

I claim that this characterisation must be extended to any
computer-human interface.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

21/37 .

Introduction A test case Elements Assessment

From Structure and Interpretation of Computer Programs

[Abelson et al., 1996] §1.1 {“The Elements of Programming”}
Every powerful language has three mechanisms [. . .]:

primitive expressions which represent the simplest entities the
language is concerned with,
means of combination, by which compound elements are built
from simpler ones, and
means of abstraction, by which compound elements can be
named and manipulated as units.

(This text is called “The Wizard Book”, after its cover picture;
highly recommended. Look at the bibliography at the end.)

I claim that this characterisation must be extended to any
computer-human interface.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

22/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Let us analyse languages

Is Bash a “powerful language” according to the previous
definition?
What about C?

C has relatively weak primitives: is this a problem?
What about C++?
What about the CPP preprocessor?
What about Lisp?

(dotimes (i 10)
(progn

(message "i is now %s" i)
(sit-for 1)))

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

22/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Let us analyse languages

Is Bash a “powerful language” according to the previous
definition?
What about C?

C has relatively weak primitives: is this a problem?
What about C++?
What about the CPP preprocessor?
What about Lisp?

(dotimes (i 10)
(progn

(message "i is now %s" i)
(sit-for 1)))

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

22/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Let us analyse languages

Is Bash a “powerful language” according to the previous
definition?
What about C?

C has relatively weak primitives: is this a problem?
What about C++?
What about the CPP preprocessor?
What about Lisp?

(dotimes (i 10)
(progn

(message "i is now %s" i)
(sit-for 1)))

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

22/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Let us analyse languages

Is Bash a “powerful language” according to the previous
definition?
What about C?

C has relatively weak primitives: is this a problem?
What about C++?
What about the CPP preprocessor?
What about Lisp?

(dotimes (i 10)
(progn

(message "i is now %s" i)
(sit-for 1)))

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

22/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Let us analyse languages

Is Bash a “powerful language” according to the previous
definition?
What about C?

C has relatively weak primitives: is this a problem?
What about C++?
What about the CPP preprocessor?
What about Lisp?

(dotimes (i 10)
(progn

(message "i is now %s" i)
(sit-for 1)))

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

22/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Let us analyse languages

Is Bash a “powerful language” according to the previous
definition?
What about C?

C has relatively weak primitives: is this a problem?
What about C++?
What about the CPP preprocessor?
What about Lisp?

(dotimes (i 10)
(progn

(message "i is now %s" i)
(sit-for 1)))

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

22/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Let us analyse languages

Is Bash a “powerful language” according to the previous
definition?
What about C?

C has relatively weak primitives: is this a problem?
What about C++?
What about the CPP preprocessor?
What about Lisp?

(dotimes (i 10)
(progn

(message "i is now %s" i)
(sit-for 1)))

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

23/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak primitives

If primitives are weak:
given good abstraction we can build more powerful
primitive-like features;
If abstraction is insufficient we are stuck.

Of the three elements primitives are the least important: with
sufficient power in abstraction and combination more powerful
primitive-like elements can be rebuilt starting from very simple
primitives.

Example: * can be defined as a function if you have +.
Example: ** can be defined as a function if you have *.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

23/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak primitives

If primitives are weak:
given good abstraction we can build more powerful
primitive-like features;
If abstraction is insufficient we are stuck.

Of the three elements primitives are the least important: with
sufficient power in abstraction and combination more powerful
primitive-like elements can be rebuilt starting from very simple
primitives.

Example: * can be defined as a function if you have +.
Example: ** can be defined as a function if you have *.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

23/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak primitives

If primitives are weak:
given good abstraction we can build more powerful
primitive-like features;
If abstraction is insufficient we are stuck.

Of the three elements primitives are the least important: with
sufficient power in abstraction and combination more powerful
primitive-like elements can be rebuilt starting from very simple
primitives.

Example: * can be defined as a function if you have +.
Example: ** can be defined as a function if you have *.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

23/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak primitives

If primitives are weak:
given good abstraction we can build more powerful
primitive-like features;
If abstraction is insufficient we are stuck.

Of the three elements primitives are the least important: with
sufficient power in abstraction and combination more powerful
primitive-like elements can be rebuilt starting from very simple
primitives.

Example: * can be defined as a function if you have +.
Example: ** can be defined as a function if you have *.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

23/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak primitives

If primitives are weak:
given good abstraction we can build more powerful
primitive-like features;
If abstraction is insufficient we are stuck.

Of the three elements primitives are the least important: with
sufficient power in abstraction and combination more powerful
primitive-like elements can be rebuilt starting from very simple
primitives.

Example: * can be defined as a function if you have +.
Example: ** can be defined as a function if you have *.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

23/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak primitives

If primitives are weak:
given good abstraction we can build more powerful
primitive-like features;
If abstraction is insufficient we are stuck.

Of the three elements primitives are the least important: with
sufficient power in abstraction and combination more powerful
primitive-like elements can be rebuilt starting from very simple
primitives.

Example: * can be defined as a function if you have +.
Example: ** can be defined as a function if you have *.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

24/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak combinations

. . . is in my opinion impossible (but very little is required).

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

24/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak combinations

. . . is in my opinion impossible (but very little is required).

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

24/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak combinations

. . . is in my opinion impossible (but very little is required).

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

25/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Compensating for weak abstractions

. . . is impossible.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

26/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: good! (Many programs doing complex things)
combination: (sequential composition by hand?)
abstraction: (is there any kind of macro?) (Xnee? [Hello Henrik])

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

26/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: good! (Many programs doing complex things)
combination: (sequential composition by hand?)
abstraction: (is there any kind of macro?) (Xnee? [Hello Henrik])

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

26/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: good! (Many programs doing complex things)
combination: (sequential composition by hand?)
abstraction: (is there any kind of macro?) (Xnee? [Hello Henrik])

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

26/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: good! (Many programs doing complex things)
combination: (sequential composition by hand?)
abstraction: (is there any kind of macro?) (Xnee? [Hello Henrik])

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

26/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: good! (Many programs doing complex things)
combination: (sequential composition by hand?)
abstraction: (is there any kind of macro?) (Xnee? [Hello Henrik])

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

26/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: good! (Many programs doing complex things)
combination: (sequential composition by hand?)
abstraction: (is there any kind of macro?) (Xnee? [Hello Henrik])

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

26/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: good! (Many programs doing complex things)
combination: (sequential composition by hand?)
abstraction: (is there any kind of macro?) (Xnee? [Hello Henrik])

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

26/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: good! (Many programs doing complex things)
combination: (sequential composition by hand?)
abstraction: (is there any kind of macro?) (Xnee? [Hello Henrik])

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

27/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: A lot predefined functionality (interactive or Lisp)
combination: (Lisp combination) (sequential composition in keyboard macros)

abstraction: (Lisp) (keyboard macros: even without Lisp!)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

27/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: A lot predefined functionality (interactive or Lisp)
combination: (Lisp combination) (sequential composition in keyboard macros)

abstraction: (Lisp) (keyboard macros: even without Lisp!)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

27/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: A lot predefined functionality (interactive or Lisp)
combination: (Lisp combination) (sequential composition in keyboard macros)

abstraction: (Lisp) (keyboard macros: even without Lisp!)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

27/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: A lot predefined functionality (interactive or Lisp)
combination: (Lisp combination) (sequential composition in keyboard macros)

abstraction: (Lisp) (keyboard macros: even without Lisp!)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

27/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: A lot predefined functionality (interactive or Lisp)
combination: (Lisp combination) (sequential composition in keyboard macros)

abstraction: (Lisp) (keyboard macros: even without Lisp!)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

27/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: A lot predefined functionality (interactive or Lisp)
combination: (Lisp combination) (sequential composition in keyboard macros)

abstraction: (Lisp) (keyboard macros: even without Lisp!)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

27/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: A lot predefined functionality (interactive or Lisp)
combination: (Lisp combination) (sequential composition in keyboard macros)

abstraction: (Lisp) (keyboard macros: even without Lisp!)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

27/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

primitives: A lot predefined functionality (interactive or Lisp)
combination: (Lisp combination) (sequential composition in keyboard macros)

abstraction: (Lisp) (keyboard macros: even without Lisp!)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

28/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

(Very hostile to free software: can you easily even run a modified
version of JavaScipt code from a web site?) (Of course apps are much worse)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

28/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

(Very hostile to free software: can you easily even run a modified
version of JavaScipt code from a web site?) (Of course apps are much worse)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

28/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

(Very hostile to free software: can you easily even run a modified
version of JavaScipt code from a web site?) (Of course apps are much worse)

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

29/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about sign languages?

Non-textual but still languages, with a grammar! No
expressivity problem.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

29/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about sign languages?

Non-textual but still languages, with a grammar! No
expressivity problem.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

29/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about sign languages?

Non-textual but still languages, with a grammar! No
expressivity problem.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

30/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What I mean by language

By language-interface I mean that a language phrase is expressed
via a term:

(dotimes (i 10)
(progn

(message "hello: i is %s" i)
(sit-for 1)))

The term encoding can be arbitrary and non-textual (for
example a sign language or any other structured grammar of
gestures or sounds). . .
. . . But it must remain precise and formal.

In order to have acceptable power a language interface must
include all three elements (primitives, combination, abstraction) at
a sufficient level of sophistication.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

30/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What I mean by language

By language-interface I mean that a language phrase is expressed
via a term:

(dotimes (i 10)
(progn

(message "hello: i is %s" i)
(sit-for 1)))

The term encoding can be arbitrary and non-textual (for
example a sign language or any other structured grammar of
gestures or sounds). . .
. . . But it must remain precise and formal.

In order to have acceptable power a language interface must
include all three elements (primitives, combination, abstraction) at
a sufficient level of sophistication.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

30/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What I mean by language

By language-interface I mean that a language phrase is expressed
via a term:

(dotimes (i 10)
(progn

(message "hello: i is %s" i)
(sit-for 1)))

The term encoding can be arbitrary and non-textual (for
example a sign language or any other structured grammar of
gestures or sounds). . .
. . . But it must remain precise and formal.

In order to have acceptable power a language interface must
include all three elements (primitives, combination, abstraction) at
a sufficient level of sophistication.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

30/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What I mean by language

By language-interface I mean that a language phrase is expressed
via a term:

(dotimes (i 10)
(progn

(message "hello: i is %s" i)
(sit-for 1)))

The term encoding can be arbitrary and non-textual (for
example a sign language or any other structured grammar of
gestures or sounds). . .
. . . But it must remain precise and formal.

In order to have acceptable power a language interface must
include all three elements (primitives, combination, abstraction) at
a sufficient level of sophistication.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

30/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What I mean by language

By language-interface I mean that a language phrase is expressed
via a term:

(dotimes (i 10)
(progn

(message "hello: i is %s" i)
(sit-for 1)))

The term encoding can be arbitrary and non-textual (for
example a sign language or any other structured grammar of
gestures or sounds). . .
. . . But it must remain precise and formal.

In order to have acceptable power a language interface must
include all three elements (primitives, combination, abstraction) at
a sufficient level of sophistication.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

31/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Other non-textual languages

I have spoken about movement and sound as ways to encode
language terms.

What about pictures?

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

31/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Other non-textual languages

I have spoken about movement and sound as ways to encode
language terms.

What about pictures?

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

32/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about picture languages?
Scratch (only some versions of it are free software!). Intended for
teaching programming to children.

Figure: Statements have an indentation at entry and a knob at exit;
expressions are hexagons; complex statements have statement-shaped
holes for sub-statements.
[Statements only exist in structured form (one entry point, one exit point). The nesting metaphor does not extend
to expressions, which is an arbitrary limitation.]

The world is burning — Run!Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

32/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about picture languages?
Scratch (only some versions of it are free software!). Intended for
teaching programming to children.

Figure: Statements have an indentation at entry and a knob at exit;
expressions are hexagons; complex statements have statement-shaped
holes for sub-statements.
[Statements only exist in structured form (one entry point, one exit point). The nesting metaphor does not extend
to expressions, which is an arbitrary limitation.]

The world is burning — Run!Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

32/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about picture languages?
Scratch (only some versions of it are free software!). Intended for
teaching programming to children.

Figure: Statements have an indentation at entry and a knob at exit;
expressions are hexagons; complex statements have statement-shaped
holes for sub-statements.
[Statements only exist in structured form (one entry point, one exit point). The nesting metaphor does not extend
to expressions, which is an arbitrary limitation.]

The world is burning — Run!Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

33/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about picture languages?
Scratch (only some versions of it are free software!). Intended for
teaching programming to children.

My opinion: useless, solves a non-problem. Teach Lisp instead.

(Scratch has combinations. Not sure about abstraction.)
Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

34/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about picture languages?
Scratch (only some versions of it are free software!). Intended for
teaching programming to children.

(whenever (clicked flag)
(set! score 5)
(forever

(if (touching? coin-sprite)
(incr! score))))

My opinion: useless, solves a non-problem. Teach Lisp instead.

(Scratch has combinations. Not sure about abstraction.)
Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

34/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about picture languages?
Scratch (only some versions of it are free software!). Intended for
teaching programming to children.

(whenever (clicked flag)
(set! score 5)
(forever

(if (touching? coin-sprite)
(incr! score))))

My opinion: useless, solves a non-problem. Teach Lisp instead.

(Scratch has combinations. Not sure about abstraction.)
Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

34/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about picture languages?
Scratch (only some versions of it are free software!). Intended for
teaching programming to children.

(whenever (clicked flag)
(set! score 5)
(forever

(if (touching? coin-sprite)
(incr! score))))

My opinion: useless, solves a non-problem. Teach Lisp instead.

(Scratch has combinations. Not sure about abstraction.)
Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

34/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about picture languages?
Scratch (only some versions of it are free software!). Intended for
teaching programming to children.

(whenever (clicked flag)
(set! score 5)
(forever

(if (touching? coin-sprite)
(incr! score))))

My opinion: useless, solves a non-problem. Teach Lisp instead.

(Scratch has combinations. Not sure about abstraction.)
Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

35/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

Focus on non-interactive programs

If I have time: interactive versus non-interactive.

Non-interactive language phrases are much easier to compose and
abstract.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

36/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

If we have time: hardware human interface

If we have time: the hardware human interface can limit the
possible software interfaces.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

37/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

You can already imagine my
opinion about this interface. . .

. . . I have a separate set of slides
about Replicant, with other
considerations.

Thanks for now

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

37/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

You can already imagine my
opinion about this interface. . .

. . . I have a separate set of slides
about Replicant, with other
considerations.

Thanks for now

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

37/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

You can already imagine my
opinion about this interface. . .

. . . I have a separate set of slides
about Replicant, with other
considerations.

Thanks for now

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

37/37 .

Introduction A test case Elements Assessment Programming languages GUI Web Non-textual Phones

What about this?

You can already imagine my
opinion about this interface. . .

. . . I have a separate set of slides
about Replicant, with other
considerations.

Thanks for now

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://ageinghacker.net

38/37 .

Image credits Bibliography

Image credits I

Mate screenshot: Copyright © Tomskyhaha, released under
CC BY-SA 4.0 https://en.wikipedia.org/wiki/
Graphical_user_interface#/media/File:
Ubuntu_Mate_18.04.1_with_MATE_1.20.1.png

Sign language: Copyright © 2008 David Fulmer, released
under CC BY 2.0 https://en.wikipedia.org/wiki/
American_Sign_Language#/media/File:ASL_family.jpg

p≡p JSON Server Adapter web interface screenshot:
Copyright © p≡p Foundation, software released under the
GPL
Emacs screenshot: Copyright © 2015-2022 Free Software
Foundation, released under CC-BY-SA, from
https://www.gnu.org/software/emacs

Scratch screnshots: Copyright © Jess Weichler, released under
CC BY-SA 4.0

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://en.wikipedia.org/wiki/Graphical_user_interface#/media/File:Ubuntu_Mate_18.04.1_with_MATE_1.20.1.png
https://en.wikipedia.org/wiki/Graphical_user_interface#/media/File:Ubuntu_Mate_18.04.1_with_MATE_1.20.1.png
https://en.wikipedia.org/wiki/Graphical_user_interface#/media/File:Ubuntu_Mate_18.04.1_with_MATE_1.20.1.png
https://en.wikipedia.org/wiki/American_Sign_Language#/media/File:ASL_family.jpg
https://en.wikipedia.org/wiki/American_Sign_Language#/media/File:ASL_family.jpg
https://www.gnu.org/software/emacs
https://ageinghacker.net

39/37 .

Image credits Bibliography

Bibliography I

Abelson, H., Sussman, G. J., and Sussman, J. (1996).
Structure and Interpretation of Computer Programs. MIT
Press, second edition. The book is freely downloadable at
https://cloudflare-ipfs.com/ipfs/
QmQ3C4ooSCmBMuK7mKq4sqVAfGq9y5EJpWNGVTQzC1FRms?
filename=sicp.pdf. See also the video lectures by the authors at
https://ocw.mit.edu/courses/
6-001-structure-and-interpretation-of-computer-programs-spring-2005/
video_galleries/video-lectures/ following the first edition of
the book.

Luca Saiu https://ageinghacker.net In defence of language as an interface GHM 2022

https://cloudflare-ipfs.com/ipfs/QmQ3C4ooSCmBMuK7mKq4sqVAfGq9y5EJpWNGVTQzC1FRms?filename=sicp.pdf
https://cloudflare-ipfs.com/ipfs/QmQ3C4ooSCmBMuK7mKq4sqVAfGq9y5EJpWNGVTQzC1FRms?filename=sicp.pdf
https://cloudflare-ipfs.com/ipfs/QmQ3C4ooSCmBMuK7mKq4sqVAfGq9y5EJpWNGVTQzC1FRms?filename=sicp.pdf
https://ocw.mit.edu/courses/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video_galleries/video-lectures/
https://ocw.mit.edu/courses/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video_galleries/video-lectures/
https://ocw.mit.edu/courses/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video_galleries/video-lectures/
https://ageinghacker.net

	Introduction
	A test case
	Elements
	Assessment
	Appendix
	Appendix

