Scalable BIBOP GC for parallel functional programs

Scalable BIBOP garbage collection for

parallel functional programs on multi-
core machines

Luca Saiu <saju@lipn.univ-parisl3.fr>

Equipe LCR, LIPN, Université Paris 13
GNU Project

Luca Saiu — LCR, LIPN, Université Paris 13

mailto:saiu@lipn.univ-paris13.fr

Eventually, parallel machines have come.

But we're still unable to program them.
Many hard, open problems. What's the right
solution?
« Automatic parallelization
 Structured parallel programming
(skeletons)?

e ...with automatic dynamic
reconfiguration?

e Data-flow?

We don’t know yet. Anyway, we need
high-level tools and languages.

High-level languages depend on GC.

Luca Saiu — LCR, LIPN, Université Paris 13

Requirements

- Scalable and fast allocation— Throughput,
e« Scalable and fast collection 'not latency

e Stop-the-world, non-incremental

e Ease of interfacing with C and
compiler-generated assembly code
e Non-moving is easiest (mark-sweep)

e No safe points (less easy, but worthwhile (?))
e...not necessarily amalloc () drop-in
replacement

« Make a good use of modern memory
hierarchies

e Memory density [more to come]

Luca Saiu — LCR, LIPN, Université Paris 13

We depend on hardware performance models

Here comes a very short summary of recent
memory architectures.

If you are interested in more detalls, see:

[Drepper 2007]

Ulrich Drepper: What every programmer
should know about memory.

Technical Report. RedHat, November 2007,
114 pages.

Luca Saiu — LCR, LIPN, Université Paris 13

A simple modern CPU [core]

CPU One core within a multi-core chip
(formerly a whole chip)
R(EF;L?ecr:s:essor L1-D Cache
10~200 words, t=11 32~512Kb
t~31
OTPEnmnea,
@erscalar or VLIW)
...Less than blefore
\ L2 Cache
L1-I'Cache (unified)
32~512Kb
t~31 512Kb~16Mb
t~14z1

[Drepper 2007] ‘

Luca Saiu — LCR, LIPN, Université Paris 13

Multi-cores are SMPs (1)

Multi-cores as SMPs: “commodity” architecture

CPU _CPU __ CPU _ CPU

FSB
- .
RAY Ny
PCI-E«~ |
SATA« » Southbricge -=USB
[Drepper 2007]

Luca Saiu — LCR, LIPN, Université Paris 13

Multi-cores are SMPs (2)

Multi-cores as SMPs: a more expensive solution

CPU CPU CPU CPU

RAM MG Northbridge MC RAM
- ‘ |
|
PCI-E~ ~ ,
S ATA Southbridge - ~USB

Several external MCs, no FSB: modern
NorthBridges tend to have high bandwidth

[Drepper 2007]

Luca Saiu — LCR, LIPN, Université Paris 13

|
Are mul This Is very hard to efficiently

Multi-cores as Nl exbloit.

Pure NUMAs are off-topic» message passing

today r clusters) among
)cesses when then

RAM s NUMA effect is important.
PCI-E=« ~ No shared heap: parallel
SATA< » non-distributed GC becomes 3
Drephof 5000 irrelevant...

The “NUMA effect” is more pronounced with
longer distances between pairs of CPUs

Luca Saiu — LCR, LIPN, Université Paris 13

User-level architecture (1)

- : “shapes” of groups of objects (size,
alignment), metadata (tag and pointer)

; : global, “inexhaustible streams” of
objects of one given kind

e : thread-local allocators which make
one new object per request

Luca Saiu — LCR, LIPN, Université Paris 13

User-level architecture (2)

cons_kind

tag: 42

pointer: NULL

size: 2 words
alignment: 1 word
marker: cons marker

threadl::

cons_source

kind:

t@i

hread3::

my cons p my_con/i_pump my\cons pump
source: source: source:
Fﬁ i .
allocatel _pump) ; alloc y cons_pump); alloca | cons pump);

Luca Saiu — LCR, LIPN, Université Paris 13

What does not fit in the picture

- Kindless objects, particularly objects whose
size is only known at creation time.

[More on this later]

- Other parts of the interface: explicit
collection, collection disabling, tuning.

Canonical and unenlightening.

Luca Saiu — LCR, LIPN, Université Paris 13

Essential

/* A tracer is a pointer to a function taking a pointer
as its parameter and returning nothing: */
typedef void (*epsilongc_tracer_t) (epsilongc_word_t);
/* Create a kind: */
epsilongec_kind_t
epsilongc_make_kind(Const
const

size_t object_size_in_words,
epsilongec_unsigned_integer_t
pointers_per_object_in_the_worst_case,
const size_t object_alignment_in_words,
epsilongc_metadatum_tag_t tag,
epsilongc_metadatum_pointer_t pointer,
epsilongec_tracer_t tracer) ;

const
const
const

/* Create a source from a kind: */
epsilongc_source_t epsilongc_make_source(epsilongc_kind_t kind) ;

/* Initialize a (thread-local) pump from a source: */
void epsilongec_initialize_pump(epsilongc_pump_t pump,
epsilongc_source_t source) ;

/* Finalize a pump before exiting the thread: =*/
void epsilongc_finalize_pump(epsilongc_pump_t pump);

/* Allocate a kinded object from a thread-local pump:
epsilongec_word_t
epsilongc_allocate_from(epsilongc_pump_t pump);

That's It.

Luca Saiu - LCR,

user API

/* Lookup metadata: */
epsilongc_tag_ t
epsilongc_object_to_tag(const epsilongc_word_t object);

epsilongc_metadatum_pointer_t
epsilongc_object_to_metadatum_pointer(const epsilongec_word_t
object);

epsilongc_integer_t
epsilongc_object_to_size_in_words(const epsilongc_word_t
object);

/* Allocate kindless objects: */
epsilongc_word_t
epsilongc_allocate_words_conservative(const epsilongc_integer_t
size_in_words) ;
epsilongc_word_t
epsilongc_allocate_words_leaf(const epsilongc_integer_t
size_in_words) ;
epsilongc_word_t
epsilongc_allocate_bytes_conservative (const epsilongc_integer_t
size_in_bytes);
epsilongc_word_t
epsilongc_allocate_bytes_leaf (const epsilongc_integer_t
size_in_bytes) ;

LIPN, Université Paris 13

BIBOP

« Segregate objects into “pages” of fixed size
and alignment: each page only holds objects

of one kind.
(not necessarily for my definition of “kind”)

e Store kind identification and (some) metadata
in a table, the “Big Bag Of Pages”

 [dea and first implementation by Steele, 1977:
MacLisp on the PDP-10

e Lots of variants since then, including the
one by Boehm...

e ...my version is similar to [Kriegel 1993]

Luca Saiu — LCR, LIPN, Université Paris 13

Structure of an (empty) page as in epsilongc

(padding)
v B ...
gngrgn cagy
tag object slot array
pointer free list head
- | page size .
? (a power of two in bytes)
<header> : .
size page alignment = page size

Luca Saiu — LCR, LIPN, Université Paris 13

What' s the advantage

object to tag:
ANDi ... PAGE MASK
LOAD O(...)

W - = N\~

(padding)

VVL‘M vy
- ain
tag 3 lg(pagesize) bits
pomter free list head A -
g | page size %
f (a power of two in by§es) |
Hadis Object poirfter | Page base Offset
il : Ii
size Page poinfer Page base 0
Page mas ‘ 111 ... 111 0
object to pointer:
ANDi ... PAGE MASK Only ﬁﬂoaq o

word size

here (no headers)
Luca Saiu - LCR, LIPN, Université Paris 13

LOAD 4(...)

BIBOP for parallel machines

e Why is BIBOP a good idea for parallel
machines?

« Why store metadata in page headers, with
modern cache architectures?

« Boehm did that for the first versions of his
collector (~1989), but then changed
according to [Jones-Lins 1996]

Luca Saiu — LCR, LIPN, Université Paris 13

Page primitive operations (for mark-sweep)

e Page creation and destruction
- Page sweeping

e Page refurbishing

Take In account cache (and OS) effects
for each operation

CMNIITVUCdJU iV 1iTviiitlh payc:

- Not really: we have good reasons to do this
with a pump [in a minute]

Luca Saiu — LCR, LIPN, Université Paris 13

Implementation of user-level structures

e Kinds are trivial records

e They just pre-compute at creation time
some data (particularly offsets which will
be needed by all the pages of the kind)

« Sources contain lists of pages not currently
“held” by any thread

e According to the sweeping policy we may
need different lists for full pages [In a minute]

« Pumps contain a reference to a “held” page
(or NULL) and “cache” important data.
They are tread-local!

Luca Saiu — LCR, LIPN, Université Paris 13

Object allocation from a pump

This Is performance-critical: let's have a look
at the source code

Luca Saiu — LCR, LIPN, Université Paris 13

Parallel marking...

e ...Is nhot so hard

e [t might need some atomic memory intrinsics
(depending on how mark arrays are implemented)

e [t's very disruptive for the cache

e Find pointers conservatively only in the roots

- By default C stack user—registered
buffers

setjmp() or getcontext ()

Luca Saiu — LCR, LIPN, Université Paris 13

Parallel sweeping...

e ...IS easy
e But it completely trashes L1 and L2 for all CPUs

« On-demand sweeping instead can even serve
as pre-allocation “prefetching” [like Boehm]

e |[t's even better if we do it backwards

« Each page free list is ordered by element
address (good for locality and automatic
hardware prefetching for mostly empty pages)

Luca Saiu — LCR, LIPN, Université Paris 13

Scalability (total completion time)

& epsilongc
-o- Boehm
(default)
- Boehm
9 sideal

2
o)
©
©
O
p]

Processors no

Luca Saiu — LCR, LIPN, Université Paris 13

Memory density

Given a kind £ of objects with alignment ax and size sg, I de-
fine the effective size ex needed to store each object, and the corre-
sponding memory density dj, the number of objects representable

per word, as:

Memory density is an index of the number of

objects representable per cache line.
Per-object headers count as part of the size.

Memory density should be maximized.

e Sounds reasonable...

- But it's not yet experimentally confirmed
Luca Saiu - LCR, LIPN, Université Paris 13

Implementation
e C
- Autoconf options, lots of #ifdefs.

e Macros, attribute()s, inlining hacks

« ~5,000 LoC, heavily commented

e Surprisingly easy to understand for being
such a low-level, inherently concurrent
software.

Distributed as a sub-project of epsilon, ()
part of the GNU Project. GPLv3 or later TM

Luca Saiu — LCR, LIPN, Université Paris 13

Portability

e The usual “reasonable” assumptions on C.
» TLS: uses thread

- Processor-agnostic: endianness, word size,
stack growth direction...

- Dependencies: (maybe) GNU libc, (currently)
POSIX threads, Unix signhals,
(at compile time) GCC.

e Performance-critical functions are easy to
re-implement in assembly as compiler
intrinsics (probably less than 50 instructions,
total).

Luca Saiu — LCR, LIPN, Université Paris 13

For more information

http://www.gnu.org/software/epsilon

http://www-lipn.univ-parisl3.fr/~saiu

saiu@lipn.univ-parisl3.fr

Thanks

Luca Saiu — LCR, LIPN, Université Paris 13

http://www-lipn.univ-paris13.fr/

