UNIVERSITE PARIS 13 — INSTITUT GALILEE

THESIS
To obtain the title of

DOCTOR OF SCIENCE OF UNIVERSITE PARIS 13

Specialty: Computer Science

GNU epsilon

an extensible programming language

Presented by Luca SAIU to be defended in public on November 19" 2012

Jury:

Reviewers: ~ Emmanuel CHAILLOUX
Michel MAUNY

Advisors: Christophe FOUQUERE
Jean-Vincent LODDO

Eraminers: Roberto D1 CosMO
Manuel SERRANO
Basile STARYNKEVITCH
Peter VAN Rov

Université Pierre et Marie Curie — Paris 6
ENSTA ParisTech

LIPN, Université Paris 13

LIPN, Université Paris 13

PPS, Université Paris Diderot — Paris 7
INRIA Sophia-Antipolis

CEA LIST/DILS

Université catholique de Louvain, Belgium

Titre francais : GNU epsilon — un langage de programmation extensible

Laboratoire d’Informatique de Paris-Nord, UMR 7030 — CNRS, Univ. Paris 13

Abstract

Reductionism is a viable strategy for designing and implementing practical program-
ming languages, leading to solutions which are easier to extend, experiment with
and formally analyze.

We formally specify and implement an extensible programming language, based
on a minimalistic first-order imperative core language plus strong abstraction mech-
anisms, reflection and self-modification features. The language can be extended
to very high levels: by using Lisp-style macros and code-to-code transforms which
automatically rewrite high-level expressions into core forms, we define closures and
first-class continuations on top of the core.

Non-self-modifying programs can be analyzed and formally reasoned upon, thanks
to the language simple semantics. We formally develop a static analysis and prove
a soundness property with respect to the dynamic semantics.

We develop a parallel garbage collector suitable to multi-core machines to permit
efficient execution of parallel programs.

Keywords: programming, language, extensibility, macro, transformation, reflec-
tion, bootstrap, interpretation, compilation, parallelism, concurrency, garbage col-
lection

Résumé

Le réductionnisme est une technique réaliste de conception et implantation de vrais
langages de programmation, et conduit & des solutions plus faciles & étendre, ex-
périmenter et analyser.

Nous spécifions formellement et implantons un langage de programmation ex-
tensible, basé sur un langage-noyau minimaliste impératif du premier ordre, équipé
de mécanismes d’abstraction forts et avec des possibilités de réflexion et auto-
modification. Le langage peut étre étendu & des niveaux trés hauts : en utilisant des
macros a la Lisp et des transformations de code & code réécrivant les expressions
étendues en expressions-noyau, nous définissons les clétures et les continuations de
premiére classe au dessus du noyau.

Les programmes qui ne s’auto-modifient pas peuvent étre analysés formellement,
grace a la simplicité de la sémantique. Nous développons formellement un exemple
d’analyse statique et nous prouvons une propriété de soundness par apport a la
sémantique dynamique.

Nous développons un ramasse-miettes paralléle qui convient aux machines multi-
coeurs, pour permettre ’exécution efficace de programmes paralléles.

Mots-clés : programmation, langage, extensibilité, macro, transformation, re-
flection, bootstrap, interprétation, compilation, parallélisme, concurrence, ramasse-
miettes

A large, crowded maze of a building that is just one part of one
branch of the local administration, in the Paris neighborhood. Under
the Summer heat I’ve been standing there or somewhere very close since
the early morning, awake since before 6am just for the privilege of being
near the front of the line. It’s finally my turn, after half a day spent
waiting. And now she tells me that no, my avis d’imposition fiscal is
not a valid justificatif de domicile. And who cares if they had told me
the opposite in her very office: she has no intention of listening to my
complaints. I'll have to return another day, with a signed copy of my
landlord’s identity card.

After I get back to the main hall near the entrance to arrange that
next appointment I must look as irritated as I am. The woman at the
desk asks me what happened. When I repeat to her what I've been
told just a few minutes before, she explodes. —What!? Come with me.
Shouting that she’ll be right back to the people waiting behind me, she
abandons her place and angrily storms away to another office. I follow
her.

We sit. Between an half-muttered insult to her colleague and the next
she asks me for my papers one by one, and checks each of them. She has
to come back to her own work: fueled by adrenaline she’s thorough but
efficient. Last, I hand her my awis d’imposition fiscal. She compares the
address, looks at the date, and skims the rest. — Yes, it’s perfectly fine!
That— labeling her colleague by a final one-word definition. She signs
my dossier herself, overriding or simply ignoring the other’s authority.
I’ll have to go pay the tax at the cash register, yes, right there on the
left and yes, then I'm done. I barely have the time to thank her before
she runs back to her desk.

To that blondish, forty-something woman who was working in a government build-
ing near Paris during the Summer of 2010, whatever her name is, I dedicate this
work.

May her rage inspire others to do the right thing.
Luca Saiu, December 2012

Acknowledgments

At the beginning of it all, one day of March, I left the place where I was born,
alone on my already old car loaded with everything I owned, headed for Paris.
Not speaking the language at the time I arrived in France as an awkward foreigner
depending on others’ kindness. Luckily many people were indeed kind to me.

And soon enough I fell in love with France: to my eyes it looked like everything
a good country should be. Yet, every time I expressed this enthusiasm (in English)
to my first French friends, I was gently reminded that my vision was partial, my
experience too limited. In other words I was a naif simpleton who hadn’t understood
anything yet — they said it more softly, ¢a va sans dire, but the idea was clear.

My optimistic naiveté, the will of trusting strangers because it’s the right thing
is more of a philosophical choice of mine — which is to say, isn’t actually real. But
for the rest I have to admit that those people, advising me to be more cautious in
my judgements, were not wrong.

Years have since passed. I met many people in France, all across the spectrum
from the constructively angry civil servant of the dedication to her opponent the
lady of many nicknames. Of everybody I met here I'd say that more people were
closer to the former. Everything considered, I'm grateful for the opportunities I got
at Université Paris 13.

Thanks to Jean-Vincent Loddo, who trusted me and made all of this possible by
hiring me to work on Marionnet during my first six months in France, and then
co-directed my doctorate. Jean-Vincent has also been a friend, very reliable and
always patient, knowing when to insist and when to let me be. I've never been able
to approach my other thesis co-director, Christophe Fouqueré, quite as closely from
a human point of view. This is entirely my fault, since Christophe has shown the
same good qualities and has been just as helpful and understanding as Jean-Vincent
whenever I've asked; he even spontaneously offered me concrete help when I was
dealing with practical problems, such as the first time my car got broken-in and I
had to go to the police, still not speaking French — and then there are the other
episodes he remembers. To both Christophe and Jean-Vincent, thanks. Thanks for
real.

I particularly wish to thank some other people in the lab for their friendliness and
warmth: Laura Giambruno, Sébastien Guérif, Pierre Boudes (who also offered to
help in the same break-in case, and not only then), and Franck Butelle. Christian
Codognet, Laure Petrucci and Adrian Tanasa also deserve a high place in this list.
And Sophie Toulouse, and Hayat Cheballah.

I’ll miss the many roommates I had in office A207 during these years: Jean-
Vincent, and then in particular Virgile Mogbil, Daniele Terreni and Giulio Man-
zonetto. And Sylviane Schwer.

viii

I had an especially good relationship with the other people working on the
Marionnet project: of course Jean-Vincent, and then especially Jonathan Roudiere,
Marco Stronati, Abdelouahed, and Franck Butelle.

Sébastien Guérif is a friend and possibly the best colleague I’ve ever had: metic-
ulous, very hardworking, interested in feedback. I've learned a lot about teaching
while doing class and lab exercises for his Programmation Impérative course. 1 also
enjoyed the company of the other colleagues doing exercises for Sébastien’s courses,
particularly Daniel Kayser, Christophe Tollu, Antoine Rozenknop, Hanane Allaoua,
Manisha Pujari, and again Laura Giambruno.

Thanks to Jean-Yves Moyen as well, for approving more or less every idea I
had in organizing the Programmation Fonctionnelle Avancée course for two years,
implicitly accepting to scale down his role to just lab exercises, despite his experience.
It was fun.

Some students of mine were actually interested in what I had to say. 1 wish to
thank them for that sparkle in their eyes saying “that’s cool” at the same time as “I
get it”. Thanks to my bad students as well, if they really tried — but no thanks at
all to cheaters.

I fondly remember a couple idle afternoons spent with Christine Recanati speak-
ing about philosophy. I had other agreeable exchanges, geeky, intellectual or simply
human, with James Avery, Roberto Wolfler Calvo, Jean-Christophe Dubacq, Jalila
Sadki Fenzar, Mario Valencia Pabon, Marco Pedicini. Thanks to Micaela Mayero,
Patrick Baillot, Damiano Mazza, Erick Alphonse and Yue Ma as well.

Thanks to Morena Olivieri, who’s a good person but doesn’t believe it yet. Thanks
for setting me in a good enough mood to finally decide to quit smoking. I can see
in retrospect how stressful quitting was; Morena and many others encouraged and
supported me during that time, particularly José Marchesi and Matteo Golfarini.

I quit in 2010 but of course I still like many smokers, or people who were smokers
at the time. Thanks to the friends and colleagues at the lab who helped me socialize
and learn the language when meeting outside for a cigarette and some human com-
panionship: first of all Sophie Toulouse and Hayat Cheballah, but also Jonathan
Roudiere (again), Jonathan Van Puymbrouck, Pierre Boudes, Amine Hemdane,
Vlady Ravelomanana, Frédéric Toumazet, Pascal Coupey, Ferhan Pekergin, Erwan
Moreau, Paolo Di Giamberardino, Hichem Kenniche, Haifa Zargayouna, and the
funny guy with a white ponytail who introduced himself as “a mathematician”.

Thanks to the old-time friends from the University of Pisa, for the good memo-
ries; those who staid, those who escaped like I did, and those who still talk about
escaping someday. Thanks in particular to Matteo Golfarini for being a good friend,
and also for having me so many times in his place near Madrid; and to my other
good friends Carlo Bertolli (who by the way also let me stay in his place in London)
and Francesco Nidito.

Some of the others I've not seen in years, but I'm sure they won’t feel offended
for being included here: Riccardo Vagli, Dario Russo, Marco Righi, Maria Cristina

ix

Favini Berti, Alessio Baldaccini, Antonio Mirarchi, Giandomenico Napolitano, Dimi-
tri Dini, Robert Alfonsi, Massimo Cecchi, Federico Ruzzier, Andrea Venturi, Erika
Rossi, Marco Peccianti, Alessio Mazzanti, Sandra Zimei, Marlis Valentini, Eliana
Anderlini. And of course Massimiliano Brocchini, who first spoke about me to
Jean-Vincent during his time in France.

Then there are some new and found-again friends such as Marco Stronati, Enrico
Rubboli and Roberto Pasini — Yet more people who ended up escaping, now that
I'm thinking of it.

And Gabriella, who still remembers me. Thanks.

Thanks to Richard Stallman for changing the world by starting the free software
movement, for setting an example with his integrity, and for GNU. Several fellow
GNU hackers, particularly José Marchesi and Alfred Szmidt, have also become close
friends to me; and I wish to remember the former “rabbit” from the UK, who might
or might not want to be mentioned by name here.

I remember with pleasure a few beautiful conversations stretching from the
evening nearly to the next morning, for example the debate on Algebra we had
in Spain with José, Alfred and Aleksander Morgado, going on long after the pub
closed and we were sent out at some crazy hour like 4am. Or the long discussions
about GCC optimizations and LTO in a Bruxelles hotel hall with Dodji Seketeli,
Alfred, José and Laurent Guerby, over what was apparently the only bad beer to
be found in Belgium; I had to speak at FOSDEM the next morning — and in the
end, after getting barely any sleep, the talk even came out nice.

Of the other GNU people I have to remember at least Nacho Gonzales, Giuseppe
Scrivano, Ludovic Courtés, Andy Wingo, Sylvain Beucler, Bruno Haible (who no-
ticed some surprising similarity between ¢ and the M4 preprocessor), Werner Koch,
Marcus Brinkmann, Neal Walfield (who had graciously offered to proofread this the-
sis, even if in the end I finished too late to let him), Henrik Sandklef, Simon Josefsson,
Juan-Pedro Bolivar Puente, Juan Antonio Afniel Cabanelas, Reuben Thomas, Ralf
the Autotools guy, Andreas Enge, Daiki Ueno, Neil Jerram, Stepan Kasal, Paolo
Carlini. Christian Grothoff, Nathan Evans and the Lilypond guy showed genuine
interest in epsilon and kept asking me about it in The Hague. And of course I
can’t forget Fred and George, who deserve to be mentioned for their crucial non-
programming contribution to GNU recutils. When I was hit by a small emergency
René Mérou was kind enough to lend me money after knowing me for less than
one day, an act of trust justified by our common ideas. I still find this sense of
commonality very moving.

Karl Berry was extremely patient in helping me with legal counseling about the
epsilon copyright status; for this I also have to thank Christophe Fouqueré (again),
Donald Robertson, the FSF lawyers, José Marchesi and Richard Stallman.

Thanks to the people at the FSF, FSFE, FFII, April and La Quadrature du Net.
Keep going, friends. Even if we’ve not won all battles yet, we’re writing history.

I’ll be forever grateful to my masters, who changed my life. I've recently redis-

covered one of my first ones, Nemo Galletti, from whose work I learned procedural

1. Some outstanding professors at the University of

abstraction at the age of ten
Pisa, particularly Marco Vanneschi and Giorgio Levi, shaped much of the good part
of what I am now. From Marco Bellia, my Master’s advisor in Pisa, I regret having
learned less than I could have. I was inspired by the frighteningly talented OCaml
people Xavier Leroy, Damien Doligez, Jérome Vouillon, Pierre Weis; and most of
all by the great masters 've never met: Abelson and Sussman, Chuck Moore, Paul
Graham, Richard Gabriel. And I'll remember John McCarthy.

A long time ago when I was young and inexperienced, after reading what some
people I admired were writing about Lisp, I decided to study it. I started with
Steele’s CLtL2 [84], but without getting much at my first reading. I was to become
a convinced Lisper only years later, after first understanding functional program-
ming from Functional Programming using Caml Light [50] by Michel Mauny; that’s
the book from which I learned “everything”. I was very impressed following my first
meeting with Mr. Mauny in Paris, many years later, casually discussing with him
without knowing his identity after somebody’s seminar. Jean-Vincent asked me if I
knew who that man who’d just left was. I said no. “Michel Mauny”. I turned my
head, but he was already gone. Now that this ordeal is over and I have no more
conflicts of interest, I feel I can finally let Mr. Mauny know this. Thanks.

Among the other jury people I've particularly enjoyed the voluminous, useful and
friendly feedback I got from Basile Starynkevitch — an unofficial third review. Along
with Manuel Serrano, Basile actually tried the software and reported a couple minor
bugs. Basile, one of these days I'll actually e-mail your own great master, as you
suggested so many times.

And thanks to Emmanuel Chailloux, who even accepted to meet me on August
17" to have his paper copy of this document.

Juanma Diaz acquired and set up the server machine we share with Matteo and
did the initial installation of the virtual system images running on top of it; later
he also migrated the host a couple times. As a command-line guy I administer my
virtual machine myself, but I have to recognize that it’s also thanks to Juanma if my
personal host ageinghacker.net has been more reliable than many “professional”
servers.

Thanks to my landlords Tina and Mohamed Serhane for the rare virtue of be-
ing cheery and discreet at the same time. To Nadége. To Filippo Bellissima, still
my favorite philosopher, for his good will. To James Randi (who has something
interesting to say about PhDs) and the JREF people, for keeping up their mission
against woo-woo. To Randall Munroe, Mohammed Jones and Scott Adams for their
webcomics. Scott Pakin taught me a neat TEX hack on comp.text.tex, even if I

'The story at http://ageinghacker.net/blog/posts/5 has a nice second part that I've not
found the time to write yet.

http://ageinghacker.net
news:comp.text.tex
http://ageinghacker.net/blog/posts/5

xi

didn’t use it in this final version of the document.

Thanks to Richard Stallman for GNU (again) and particularly for GNU Emacs,
to Donald Knuth for TEX, to Leslie Lamport for IATEX, to Lars Magne Ingebrigtsen
for Gnus (using such a great client for e-mail and Usenet has actually made me a
happier man), to Michael Stapelberg for 13; plus the thousands of other people who
contributed.

Thanks to Wikimedia Foundation, to the fellow contributors to the English
Wikipedia and to the contributors (I don’t dare myself yet) to the French Wik-
tionary.

Thanks to the people at INRIA Saclay where I'm a postdoc now: Fabrice Le Fessant,
who trusted me, and the colleagues Cagdas Bozman, Pierre Chambart and Michael
Laporte.

I apologize once more to Christophe Cérin, Jean-Paul Smets and Camille Coti
for backing down from their postdoc offer at the last minute. If I hadn’t had this
unforeseen exciting opportunity at INRIA, I’d have been happy to work with them
instead.

There are a few more people I'd really want to name, but since I’'m honestly not
sure if they would appreciate it I'll avoid mentioning them. In any case they will not
mistake my respect of their privacy for an omission out of spite. There are indeed
many people I’d be supposed to thank here “by custom” and yet are glaringly absent
from this list because they don’t deserve to be in it — which sums up pretty well
what I think of customs; but I wouldn’t imagine for one moment that people who
are dear to me could doubt my sincere affection for them.

I regard the design of € as a quite personal issue, which I think will be obvious
from the document. It’s the expression of my philosophy of what a programming
language should be, for in the end the place in the design space where one chooses
to look ends up being more a matter of personal preference than anything else. I've
developed my opinions in years of reading and discussing, mostly influenced by the
Scheme, Forth and Common Lisp communities. Interestingly, very few of the people
working physically close to me ever seemed to share my views. When comparing
opinions — which has been useful in any case — I've resisted interferences and re-
jected many suggestions; most strongly, the mistaken idea that static typing should
always come at the expense of everything else. The final shape of the ¢y and ¢
languages as described here is a product of my ideas, something I'm willing to take
responsibility for, pros and cons and all.

Jean-Vincent and Christophe, thanks for the freedom you gave me to explore
and to do what I believed. All in all, it was fun.

Luca Saiu, December 2012

Contents

Abstract iii
Abstract iii

Résumé iii
Dedication v
Acknowledgments vii
1 Introduction 1
1.1 Programming language taxonomy L. 1
1.1.1 Paradigm 2

1.1.2 Typing policy 2

1.1.3 Concurrency model 3

1.2 Hybridization and complexity 4
1.2.1 Hybridization limits)

1.3 Growing a language 5
1.3.1 Procedural and syntactic abstraction 6

1.3.2 Syntactic abstraction and core-based languages: macros 7

1.3.3 Transforms as syntactic abstraction 10

1.3.4 Why reductionism L 11

1.3.5 Related languages 12

1.4 Oursolution. 14
1.5 Summary 15

2 The core language ¢g 17
2.1 Features and rationale, . 17
2.1.1 Firstorder 17

2.1.2 Reflection 18

2.1.3 Handles 18

2.1.4 Primitives 19

2.1.5 Bundles 19

2.1.6 Parallel features 20

2.2 Syntax 20
2.2.1 Meta-syntactic conventions for expressions 22

2.3 Semantics and the real world 22
2.3.1 Resource limits 23

2.4 Configurations 24
2.4.1 Theglobal state 24

2.4.1.1 Notational conventions for states and environments 25
2.4.2 Global and local environments 25

xiv Contents

243 Memory 26
2.4.4 Procedures 26
2.4.5 Primitives 27
2.4.6 Holed expressions 28
247 Stacks 29
2.4.8 Futures 29
2.4.9 Configurations Lo 30

2.5 Small-step dynamic semantics oL 30
2.5.1 Small-step reduction 31
2.5.2 Sequential reduction L. 37
253 Failure 37
2.5.4 Error recovery and personalities 40

2.6 One-step dynamic semantics 40
2.7 Summary 42
Reflection and self-modification 43
3.1 Global definitions 43
3.2 Programs and self-modification, 44
3.2.1 Programs 45
3.2.2 Static programs Lo 45
3.2.3 When torun analyses 47

3.3 Unexec. e 48
3.3.1 The stuff values are madeof 49
3.3.2 Marshalling o 51
3.3.2.1 Boxednesstags 52

3.3.2.2 Marshalling properties 54

3.4 Summary e 55
A static semantics for ¢p: dimension analysis 57
4.1 Dimension inference 57
4.1.1 The dimension lattice (N],m, 1), 58
4.1.2 Definition and properties 59
4.1.2.1 There cannot be a most precise dimension analysis . 62

4.2 Semanticsoundness 63
4.2.1 Resynthesization 63
4.2.2 Weak dimension preservation 65
4.2.3 Semantic soundness properties 69

4.3 Reminder: why we accept ill-dimensioned programs 70
4.4 Summary ... e 71
Syntactic extension 73
5.1 Preliminaries 73
5.2 S-expressions e 74

5.3 Lispsyntax 78

Contents XV

5.3.1 Lisp informal syntax 0L, 78
5.3.2 Critique 81
5.4 Syntactic extensions: the €; personality 83
5.4.1 Definition via bootstrapping 84
5.4.1.1 Phase (i): extend Scheme with untyped data 85
5.4.1.2 Phase (4i): implement ¢ in extended Scheme 87

5.4.1.3 Phase (ui): build reflective data structures and in-
terpreter ineg Lo 90
5.4.1.4 Macros 103
54.1.5 Transforms 106

54.1.6 An aside: developing, testing, and the ordering of
phases 110
5.4.1.7 Phase (iv): fill reflective data structures 111
5.4.2 Unexec 113
5.4.3 Optimizations 113
5.4.4 Sample extensions 115
5.4.4.1 Quoting and quasiquoting 116
5.4.4.2 Variadic procedure wrappers 117
5.4.4.3 Sum-of-product types 118
5.4.44 Closure Conversion 119
5.4.4.5 Futures 121
5.4.4.6 First-class continuations 122
5.4.5 Implementation status L. 123
5.5 Future work 124
5.6 Summary 124
6 A parallel BiBOP garbage collector 125
6.1 Motivation 125
6.1.1 Boehm’s garbage collector 126
6.1.2 High-level design, 127
6.1.3 The functional hypothesis 127
6.2 The user view: kinds, sources and pumps 128
6.2.1 Kinds 128
6.2.2 Sources 128
6.23 Pumps. 129
6.2.4 Kindless objects oo 129
6.2.5 Miscellaneous user functionalities: 129
6.3 Implementation L o o 129
6.3.1 Kinded objectso o 131
6.3.2 BiBOPopages 131
6.3.2.1 Pagecreation 134
6.3.2.2 Pagesweeping 135
6.3.2.3 Page refurbishing 136

6.3.2.4 Page destruction 136

xXvi

Contents

6.3.3 Sourceso
6.34 Pumps.

6.3.4.1 The allocation function
6.3.5 Kindless and large objects
6.3.6 Garbage collection
6.3.7 Synchronization
6.3.8 Datadensity,
6.3.9 Closures

6.3.10 Lazy and object-oriented personalities

6.4 Status
6.5 Summary
Conclusion

Bibliography

CHAPTER 1

Introduction

Reductionism is a viable strategy for designing and implementing practical program-
ming languages, leading to solutions which are easier to extend, experiment with
and formally analyze.

Contents

1.1 Programming language taxonomy 1

1.2 Hybridization and complexity

1.3 Growing a language o 0o e, 5
1.4 Oursolutiono 14
1.5 Summary v v vttt it e e e e e e e e e e e e e e e e e 15

Programming languages have proliferated nearly since the beginning of Com-
puter Science. However, despite the sheer number of dialects with different syntaxes
and details, there is still comparatively little variety in programming models and
paradigms — yet programming problems remain at least as hard as ever.

In order to really innovate in this field researchers need extensible languages
which are easy to modify and experiment with, but at the same time not limited to
simplified idealizations. Bringing the same idea out of the lab and into practice, an
expert end-user should be able to bend and adapt the language to make it fit her
problem, rather than the opposite.

For this to be possible a language has to start out simple and open-ended: able
to express different paradigms, yet not hardwired for any; easy to reason about in
a rigorous way when needed, without being unconditionally constrained.

1.1 Programming language taxonomy

Languages may be classified along at least three mostly orthogonal axes: paradigm,
typing policy and concurrency model. In the following we limit ourselves to a quick
overview; reviews articles such as [92| contain a much more detailed topology, with
extensive examples.

Furthermore, not all of the relevant concepts have satisfactory formal definitions;
but in this whirlwind tour we are going to renounce most pretenses of being exact,
accepting to speak of very general concepts in terms somewhat vague.

2 Chapter 1. Introduction

1.1.1 Paradigm

Many popular languages such as C are imperative. Imperative languages, based on
destructive mutation of state and explicit control flow, trace their origin to Turing
machines, and in practice are easy to understand in terms of the underlying machine
language.

Functional languages such as Haskell, ML and Lisp, shunning or at least limiting
the occurrences of assignment statements, are basically sugared versions of some
A-calculus variant; their level of abstraction is much farther away from the hardware
than imperative languages. Most functional languages are higher-order, i.e. they
allow to pass functions as parameters to other functions, and to return functions as
results.

At an even higher level, relational and constraint programming attempt to sup-
port a declarative, rather than algorithmic, style by dealing with sequences of data in
an extensional fashion and having the user exploit data relations instead of building
explicit data structures. Such languages tend to be based on particularly clean and
simple mathematical theories such as relational algebra (the SQL query language)
or some subset of the Predicate Calculus (Prolog!).

Object-oriented languages such as Smalltalk are more pragmatic: they encourage
modelling data structures upon real-world entities by making the “behavior” or a
computational object a function of the object identity, and making it easy to define
related classes of objects by only specifying their differences.

Other families including concatenative languages such as Forth and Postscript,
and array languages like APL can be more or less directly traced back to one of the
four main groups.

1.1.2 Typing policy

Another orthogonal attribute of programming languages is their support for typing:
programs written in statically-typed languages are mechanically analyzed prior to
execution in order to check that some soundness property is satisfied, thus prevent-
ing certain errors from ever occurring at runtime: the compiler will simply reject any
“suspicious” program — invariably including some false positives. ML and Haskell
are examples of statically typed languages with strong type systems; many popular
languages such as C, C++ and Java are also statically-typed, but their very com-
plex semantics do not allow the extensive static checks which are relatively easy to

'Despite not being meant as general-purpose languages, we argue that database query lan-
guages are actually much better examples of declarative non-algorithmic programming than logic
languages: query languages allow to reason about objects and their relations, completely abstract-
ing away from data structures and even more importantly search strategies, i.e. algorithms. By
contrast programming in Prolog in practice requires to constantly keep in mind its operational
semantics, for reasons of efficiency and even correctness: for example just reordering two Horn
clauses, which from a logic point of view simply yields an uninteresting equivalent variation, can
easily change complexity from linear to exponential or dramatically alter termination properties
and the number of results.

1.1. Programming language taxonomy 3

perform in functional languages?, and many more runtime errors remain possible:
we speak of weak static type checking.

By contrast dynamically-typed languages such as Lisp, Perl and Python perform
checks at runtime before executing each operation subject to failure, typically at
some cost in performance but gaining expressivity in comparison to the static-typing
case; of course dynamic typing by itself cannot statically guarantee any soundness
property.

Some low-level languages such as Forth and most assemblies are untyped: each
datum is interpreted as-is without any check or conversion, assuming that it is always
a valid operand for its operator; such languages trading safety for efficiency may not
be suitable for all applications, yet they also definitely have a place in programming.

A subset of statically and strongly-typed languages including ML and Haskell em-
ploys type inference to automatically reconstruct type declarations from programs,
rather than have the programmer provide them; this is convenient, but since type
inference is undecidable for the most powerful type systems [18], relying on it alone
reduces the expressivity of the language. Type inference is harder to employ in
non-functional languages, and possibly because of cultural biases it is not widely
used with weak type systems.

Even if mainstream languages seem resistant to adopt any such technique, the
idea of static checking can be extended from typing to other properties computable
via (necessarily partial for nontrivial languages) static analyses such as termination,
time and space complexity, or escaping.

1.1.3 Concurrency model

Another aspect which we must at least cite constitutes another whole axis in the lan-
guage space topology: the model of concurrency (synchronous versus asynchronous,
message-passing versus shared state) also has a deep impact on the language seman-
tics, and not only on the implementation of the runtime system.

The concurrency model of all the mainstream languages named above is asyn-
chronous shared-state: concurrent “threads” read and mutate the same global state,
explicitly synchronizing accesses when needed. The other important concurrency
model is message-passing: threads or processes don’t share state, but cooperate by
exchanging messages. Erlang supports message-passing only; in the other languages
mentioned above message-passing can be implemented on top of shared state, or is
available as a thin “wrapper” over the inter-process communication primitives pro-
vided by the operating system. Languages with a synchronous concurrency level
(at the software level) are a research topic [9, 17, 67| but have yet to see major
application.

2Tt could be argued that the idea of passing parameters to and receiving results from a function
lends itself to reasoning about compatibility; sequential side effects, on the other hand, always
“compose well” with one another in a superficial sense, but may lead to more subtle violations of
implied invariants.

4 Chapter 1. Introduction

Synchronous models are better suited to formal reasoning: in his formal calculi for
concurrency CCS [56] and m-calculus [53, 54| Milner considered synchronous com-
munication as primitive, and represented asynchronous processes by adding (syn-
chronous) “queue processes”.
On the other hand modern parallel hardware is strongly asynchronous, and truly
parallel synchronous implementations on top of it tend to be prohibitively inefficient.
Older-generation languages tend to support no notion of concurrency at all.

1.2 Hybridization and complexity

Why are there so many programming languages? Couldn’t they just agree on one?
We have all heard this naive question.

The fact that such a question can only come from a beginner is evident from
our experience of how coding in even surprisingly similar languages “feels” different:
for example about? the only real semantic difference between Pascal and C is the
different strength of their type systems — static in both cases; yet the subjective
“experiences” of writing in the two languages are far apart, as any programmer
having used both can witness. That said, we also have to recognize that many
differences between languages are in fact incidental, due to backward compatibility
concerns or cultural inertia.

Another, deeper, answer to the beginner question is that different problems call
for different languages. But then, why not merging the greatest possible number
of features from different styles into one “perfect” language? In fact there exists
such a trend: languages inspire and influence one another, and some recent ones
such as Oz [93] make a point of offering support for as many different paradigms
as possible; but even without looking at such extreme examples, a move towards
hybridization is evident in most recent languages: contemporary languages such
as C++, Java and C#, but also the popular “scripting languages” Python, Perl,
JavaScript, incorporate at least two paradigms — imperative and object-oriented,
with some elements of functional programming being more slowly accepted into the
mainstream; in fact it could be argued that object-oriented programming is itself
firmly rooted in the imperative paradigm, with only some restricted patterns taken

from functional languages®. Most object-oriented languages also have hybrid type

3The different funarg problem [61] workarounds bear a much more limited impact in practice.

4The idea of late binding at the heart of object-orientation would be easy to emulate with data
structures containing functions; in fact virtual method tables are typically implemented as chained
arrays of pointers to functions, where functions have access to a “struct” holding field values: in
other words, chained closure arrays: if method lookup fails in one class, a link is followed and
the next one is tried, up the inheritance chain — or occasionally sideways, in case of multiple
inheritance. As a different kind of hybridization, other non-imperative languages now include
object-oriented features: the ML dialect OCaml [71, 19] managed to also add objects in a mostly-
functional language and still keep its type system strong and static, at the cost of some complexity.
More pragmatically, most modern SQL systems include some kind of object-oriented extension,
more or less well-integrated in the relational paradigm.

1.3. Growing a language 5

systems, with some static and some dynamic checks. Often both message-passing
and shared-state are available as concurrency models.

1.2.1 Hybridization limits

There are clear limits to hybridization: some features regarded as desirable in dif-
ferent communities are mutually incompatible, if not opposite. For example both
having a static typing discipline and not having one may be reasonably argued to
be useful features: one solution permits to prove run-time properties of a program
before running it, the other improves expressivity. In the same spirit, the useful
properties of purely functional languages [10, 40] would be destroyed by adding an
assignment operator.

But even if we forget for a moment that many possible sets of features are just
incompatible, designing a strongly hybrid language entails giving up on finding sim-
ple answers to programming problems, and just hoping that programmers will be
better prepared for the unknown with a bigger toolbox: the bigger, the better. This
pragmatic approach hits its limit when a language becomes too big to be intellec-
tually manageable — at which stage the language may or may not be adequate for
most tasks.

As a further objection against hybridization, working with such large chimeras
makes harder to experiment with language features by building prototypes — in
fact it may not be by chance that most such experimentation has historically taken
place in Lisp dialects, which we will see to be the closest to our model.

1.3 Growing a language

Guy L. Steele dealt with the issue of the “size” of programming languages in his
famous OOPSLA 1998 keynote talk “Growing a language” [85]. In a wonderfully
deconstructionist exploit, Steele constrained his own English to follow the same rigid
rules of formal languages in which every non-primitive “word” needs to be explicitly
defined before use. By taking as primitives only English monosyllables he tried to
communicate the feel of using a very small (programming) language.

The main point of the speech was the idea of working with a language powerful
enough to be evolved by the user community under the coordination of a main-
tainer; and possibly even more important, the user herself would bend the language
to her needs, as part of the daily practice of programming.

Even after several polysyllable definitions Steele’s original prose retains its pe-
culiar charm:

[-..] alanguage design of the old school is a pattern for programs. But
now we need to ‘go meta.” We should now think of a language design as
a pattern for language designs, a tool for making more tools of the same

6 Chapter 1. Introduction

kind. [...] My point is that a good programmer in these times does not
just write programs. A good programmer builds a working vocabulary. In
other words, a good programmer does language design, though mot from
scratch, but by building on the frame of a base language.

— Guy L. Steele Jr., [85]

As the initial iteration of this process Steele proposed Java with some minor changes
— thus at least a middle-sized language; in his opinion intentionally small languages
such as the Lisp dialect Scheme, originally his own brainchild [89, 87|, would remain
hopelessly inadequate for modern tasks, as he tried to suggest with the one-syllable
metaphor.

More than a decade has since passed, and the envisaged extension of Java by the
community has not materialized®.

The idea of “growing a language” remains a valid strategy, if not even the only
realistic one. Without overlooking this important engineering insight, we find it
worth to spend some words on what we do not agree with in Steele’s presentation.
Anyway, since much of the controversy will center around Java, to Steele’s credit we
must at least cite his later contributions based on Fortress [86], sharing the same
idea of a “growth plan” but with a more suitable core language. That is the point:
what makes Fortress a better match than Java for the task? And what yet superior
alternative can we extrapolate from this trend?

1.3.1 Procedural and syntactic abstraction

In our opinion it is not by chance that the crucial insight for finding the missing
ingredient was provided in [2|, co-authored by Gerald J. Sussman — the other father
of Scheme.

Our sketch of a language topology is reasonable but fails to really capture the
actual expressive power of a language, as until this moment we have ignored a
fundamental and orthogonal class of language features: means of abstraction, called
“patterns” in Steele’s quotation above.

Starting from the very first chapter, [2] speaks about means of abstraction as ways
of naming patterns of code, possibly with parameters, so that they may be re-used
at will as if they were primitive. In other words a mean of abstraction allows to
factor away some code, so that we can reason at a higher level and ignore irrelevant
details unless needed. The idea is by necessity vague as it potentially extends to
any point of our language topology and beyond, yet we do not feel much danger of
ambiguity: any programmer will promptly recognize abstraction features. We are
speaking about procedural abstractions (including all the obvious generalizations
to functions, predicates, modules and classes); and, as a separate group, syntactic

SIronically, something close to Steele’s vision of mostly-decentralized extensions has material-
ized in Scheme with SRFIs [80]; development is active, at least in the comparatively small scale of
the Scheme community.

© 00 N O U R W N =

D Gt s W N

1.3. Growing a language 7

abstractions such as macros. No other example of a syntactic abstraction feature
comes to mind and in fact no other case is in common use® — but we are going to
introduce another kind in §1.3.3, and more fully in §5. Modern high-level languages
support more or less adequate procedural abstractions, including higher order (C-++
supports “lambdas” as per its latest Standard [38| and even Java should follow suit),
but most are still very weak in syntactic abstraction; we are now proceeding to
explain why this is important.

1.3.2 Syntactic abstraction and core-based languages: macros

In order to clarify what we mean by syntactic abstraction, we are now going to
informally present a classic example.

Let us assume an imperative language similar to Pascal or C, with a while..do
..done loop but no repeat..until; we want to extend the language so that we can
write:

procedure print_at_least_once (n):
variable x = 1;
repeat
print("x is ");
print(x);
newline();
X :=x + 1;
until x > n;
end.

With a suitable macro system we could define repeat..until as syntactic sugar,
so that for any sequence of statements s and any expression e, the loop “repeat
s until €” is rewritten into “s; while not (e) do s; done”. Handwaving away
some trivial details which are not relevant here, we could say that the macro defini-
tion is:

macro repeat <s> until <e>:
<s>;
while not (<e>) do
<s>;

done;
end.

Using the repeat..until macro, the macroexpander stage of the compiler would
automatically rewrite the above definition of print_at_least_once into:

5Some historical Lisp dialects used fexprs [64] as an alternative to macros; so does a new dialect
called Kernel [78], resurrecting them thirty years later. Fexprs are also discussed at some length
as an implementation device in [87, pp. 25-26].

8 Chapter 1. Introduction

procedure print_at_least_once (n):
variable x = 1;
print("x is ");
print(x);
newline();

X :=x + 1;

while not (x > n) do
print("x is ");
print(x);
newline();
X :=x +1;

done;

end.

Unsurprisingly enough, the rewritten code contains a repetition: the macro call
“factors away” an undesired regularity which would make the code harder to maintain
if written directly in the extended form; even in such a trivial example as this the
code using the macro looks easier to read, and its purpose more explicit. Also notice
how macroexpansion had only local effect: the macro call has been replaced, but
not its surrounding code.

It is worth stressing how our repeat..until loop functionality can not be de-
fined as a procedure, unless the language supports higher order or some more exotic
language feature such as passing statements as parameters; and even where those
features were available, notice how macroexpansion might still produce a more effi-
cient result and possibly be safer, as it takes place entirely before runtime.

Our sample macro simply glues together pieces of code without performing any sub-
stantial computation. This is not always the case: several languages, mostly Lisp
dialects, have Turing-complete macro systems [79, 4, 47]. Other languages such as
C are limited to weak token-based preprocessors [37] whose power does not reach
much further than defining repeat..until (with uglier syntax). Other languages,
Java included, do not support syntactic abstraction at all. We argue that precisely
this weakness of Java has prevented Steele’s plan from materializing.

Indeed the bottom-up programming style in which the language is extended to suit
the problem, as implicit in Steele’s quotation, is very typical in the Lisp world —
and quite alien to most other communities.

Macros are so helpful in building syntactic sugar for existing languages that some
Lisp dialects such as Scheme are in fact core-based [79, §1.9, §B]: implementations
may choose to develop at a low level some core forms and define the rest of the lan-
guage as a set of macros, eventually rewriting programs into combinations of core
forms only.

As an obvious such example, a block in a higher-order functional language can
always be rewritten into the immediate application of an anonymous function with
the bound variables as its formals and the block body as its body, and with the
bound expressions as actual parameters: “let a = 1 + 2, b =3 + 4 in a + b’

e oW o R

s oW N R

[N

1.3. Growing a language 9

has the same operational” behavior as“(A a b . a + b) (1 + 2) (3 + 4)”; since
the language needs A and function application anyway, we can define let as a macro
rather than having it as a primitive form, obtaining a simpler core language.

As the number of bound variables is arbitrary, the sample macro language we showed
above can not express the rewrite quite adequately; yet the task is considered very
ordinary in Lisp dialects, which to ease metaprogramming use the same syntax for
programs and data structures. Deferring the explanation of details to §5, we show
here a possible definition of let just to highlight its simplicity®:

(define-macro (let bindings . body)
‘((lambda , (map car bindings)
,@body)
,@(map cadr bindings)))

This version of 1let binds variables “in parallel”: defined expressions have no visibility
of bound variables. The alternative “sequential-binding” block known as let* in Lisp
is also easy to obtain by macroexpansion, in this case by rewriting it into nested
trivial parallel-binding blocks in which the outermost let binds the first variable
bound by let*. Recursive macros can still be very simple:

(define-macro (let* bindings . body)
(if (null? bindings)
‘(let () ,@body)
‘(let ((,(caar bindings) ,(cadar bindings)))
(let* ,(cdr bindings)
,@body))))

let follows the intended evaluation order under a call-by-value strategy: fully re-
ducing all the operands before the application forces to evaluate the body only after
all bound expressions. Much in the same way, let* constrains the evaluation order
so that bound expressions are reduced top-to-bottom.

There are many other similar examples: the short-circuiting left-to-right versions
of the and and or operators are easy to express with conditionals: “a and b” has
the same behavior as “if a then b else false”, while “a or b” can be rewritten
into “if a then true else b”.

"Despite the vagueness entailed by not having specified any particular semantics we have to at
least recognize the fact that what is equivalent operationally might not be under a corresponding
static semantics; in particular we might have good reasons for using different type rules in the
case of the expanded form. Such an observation is not new at all: Milner had already recognized
in [55, §3.5] what is now called let-polymorphism [63, §22.7]. Here we intentionally disregard any
static semantics, delaying the justification to §4. This same remark also applies to the following
examples in this subsection.

8We have omitted the check verifying that bindings are two elements long. Apart from that,
the definition is perfectly realistic.

10 Chapter 1. Introduction

We can go even further: why having a conditional at all? By Church-encoding
booleans so that “true” is “Axy.x” and “false” is “Axy.y”, and taking “e” as the el-
ement of a unit type (or indeed as any object), we can define “if a then b else ¢”
as syntactic sugar for “((a (Az.b) (Az.c)) e)” for some variable z not occurring
free in b and c. Again, A and the function application with e allow the conditional
to reduce as expected also under call-by-value.

1.3.3 Transforms as syntactic abstraction

The continuation of a subexpression of a program is a function or procedure with
side effects which, given the result of the subexpression, returns the final result of
the program [89, 5.

Programs can be automatically rewritten into Continuation-Passing Style, a nor-
mal form making all continuations explicit as A-terms. For example, let the con-
tinuation of a + 2 be «; then by using one of the transformations in [46] we obtain
(Az.(A\y.k(x + y))2)a as its CPS version. It is not too difficult to see how both
versions yield the same result:

e First we evaluate a, passing it to its continuation \z.((Ay.k(z +v))2);

e the continuation of a binds it to z, and passes 2 to its continuation
Ay-(k(z +y));

e the continuation of 2 binds it to y, evaluates the sum of z and y, and passes
the result on to k;

e r provides the sum of and y to the rest of the computation, which will finally
yield the result.

One desirable feature of the CPS form is its independence from the evaluation strat-
egy: in particular, the reduction sequence above holds for both call-by-value and
call-by-name. Because of this and other useful properties, CPS may be convenient
to use in compilers as an intermediate form to perform some semantic-preserving
optimizations 83, 5, 44]. However, since our main interest here is program expressiv-
ity, we are particularly interested in first-class continuations: a syntactic form such
as call/cc permits to access continuations as data in an untransformed program,
performing “jumps” into or out from expressions [79]. The call/cc form can also be
rewritten into an ordinary A-term along with the rest, by the same transformation
which turns the program into CPS.

First-class continuations are famously counter-intuitive and difficult to employ di-
rectly, but they can simulate powerful control features such as exceptions, coroutines,
generators, and even backtracking; by using macros we can syntactically abstract
away the implementation of these control features, and provide a simple high-level
syntax.

1.3. Growing a language 11

A prerequisite for doing this is, of course, hiding the transformed program from
the user. As already evident from the trivial example above, CPS-transformed
programs are long and tedious to read: the user should simply use call/cc (or,
better, syntactic forms reducing to call/cc uses) in direct-style, untransformed
programs. We already stated that the transformation can be automatic, and that
it supports call/cc as well — hence such a kind of syntactic abstraction is clearly
possible. But can we define a CPS transformation using macros?

The answer is no: the result of CPS-transforming an expression depends on its
context, while macros only have access to their parameters. If we are to support
global program rewritings such as CPS, we need to introduce a second syntactic

9. Transforms map syntactic objects

abstraction feature: we call it the transform
into other syntactic objects, and can be employed either before defining a global
object, or retroactively on an existing program.

Transforms can be quite useful [46]: just as it is the case for CPS, the Closure
Conversion process rewriting A-terms into explicit closures |72, 6] may require con-
textual information: unless we want to close over globals!?, when building a closure
we need to know the set of variables which are bound at that program point.

To reiterate, by composing two transforms it is possible to build a language
supporting first-class continuations based on a core not even containing anonymous
A-terms.

Program transformations are commonly seen in formal mathematical presentations,
but to our knowledge they have not been available as an abstraction tool in any
general-purpose programming language up to this point.

1.3.4 Why reductionism

It should be clear by now that taking the core-based approach to its logical extreme
yields a very simple core language. Anyway before committing to that route it may
be worth to pause and consider our ultimate purpose, and of course the tradeoffs
involved.

First of all a small core language is easy to reason about, particularly if program
analysis is automated — which had better be, at a time when programs as written
by humans can be millions of lines long. Moreover the core language will tend to

9Some controversy remains among English purists about the use of the term “transform” versus
“transformation”; according to some, a transform is the result of a transformation. We admit
that even in Computer Science the use of the term “transform” for the function operating the
transformation is not universal, but we still prefer the shorter form.

1OML dialects do in fact close over “global” variables as well, but we find that this choice
complicates interactive programming, sometimes yielding “unexpected” results in case of variable
redefinitions. As a matter of personal taste we tend to prefer the solution of Common Lisp and
Scheme which close over nonlocals only, not including globals. In practice we suppose that the ML
behavior is dictated by the need not to invalidate the results of previous type inferences whenever
a global is redefined.

12 Chapter 1. Introduction

be easier to “get right”, as a small number of features will reduce the chances of
unforeseen bad interactions. A naive implementation will also be quick to build.
On the other hand, as the core language will not be usable in practice with-
out several layers of extensions, the problem of tracking source locations becomes
relevant: a user will normally write in the extended language and expect the pro-
gramming system to refer the extended program as she wrote it in terms of file
names, line numbers and syntactic forms: for example error messages referring the
final transformed program would prove very hard to understand!'. Just a little
more subtly, static analyses will often need to refer to the non-primitive forms of
some higher-level intermediate languages, instead of the core'?: hiding details is the
whole point of abstractions. The obvious implementation will also be inefficient, as
evident from the examples in §1.3.2 and §1.3.3; however, since the code will start
small and manageable, it will be less hard to introduce optimizations where needed.

We have mentioned pros and cons; in fact we argue that all the objections above
can be answered, but even this it not essential in our view: we believe that any or
all of the problems above would still be offset by the crucial advantage of obtaining
an open-ended language, able to grow in unanticipated directions.

In order to achieve this ultimate goal we need both a small core language, and
strong syntactic abstractions.

The choice above is a conscious restriction on the region of the design space we
are setting to explore. Other choices are certainly possible, and a couple have been
tackled in the past, with interesting results.

1.3.5 Related languages

The most famous example of this design as well as a source of inspiration for this
work, again, is Scheme [79]: anyway we have to remark how the core contains much
more than a functional language!?, including complex features such as first-class
continuations, which could not be re-implemented by using Scheme’s syntactic ab-
straction alone. Despite its beauty Scheme’s syntactic abstraction system itself is

1 Actually, simple partial solutions to this problem have been known for a long time. For
example the C language preprocessor generates a #line directive in the output mentioning the
original file name and line whenever the source of the output changes; this is enough information
for the compiler to map each element of the single stream of code it receives back to its original
location. Anyway debugging C code using macros remains notoriously hard: one reason is the lack
of a similar output-to-input mapping at the level of syntactic forms.

12 Again, an example is let under Hindley-Milner type inference, which could be defined with
a macro such as the one above, but would benefit from being typed with let-polymorphism, dif-
ferently from generic function calls. As another example, a CPS transform can encode first-class
continuations into anonymous functions — but in a static type system, continuations would need
their own separate typing rules.

13Tom Lord’s failed proposal for the new Scheme Standard — before his alleged expulsion from
Working Group 1 — would have been philosophically closer to our vision, despite the very different
core. Lord’s core language “WG0 Scheme” would have used fezprs [64, 78] and reified environments.
His own recount is at http://lambda-the-ultimate.org/node/3861#comment-57967.

http://lambda-the-ultimate.org/node/3861#comment-57967

1.3. Growing a language 13

also quite complex, based as it is on hygienic macros [42]. The macro system does
not look easy to factor, as shown by the experience of psyntax: psyntax is a com-
piler translating Scheme with macros into pure Scheme, which is itself written in
Scheme with macros and hence needs to be bootstrapped with a pre-compiled ver-
sion. Psyntax is elegant but, by the author’s admission [25, §18], not trivial.

As our second example of a reductionistic design, Forth [30, 29| is about as ob-
vious: its basic mechanism is imperative state mutation involving a fixed set of
global stacks, with no need for actual expressions: “42” is an imperative statement
pushing a number on a stack, and the “+” word replaces the two topmost stack ele-
ments with their sum. All words, predefined or not, are zero-parameter zero-result
procedures with imperative stack effects. Even control features such as loops are
defined as stack operations, involving the stack normally used for procedure return
addresses.

Defining a word involves temporarily switching to a “compile state”, in which
each encountered word is taken from the program input stream and appended to
the current definition rather than being executed immediately; to implement this,
all word definitions begin and end with the state-switching words “:” and *“;”. The
words!® “(” and “)”, respectively opening and closing a comment, work in the same
way. No syntactic structure exists at a scale larger than individual words.

Forth is an unusual language somewhat defying classification, and it is debatable
whether abstraction features such as changing “state” even count as syntactic — it
might be the case that very strong procedural abstraction may partially compensate
for the absence of syntactic abstraction features, like higher order does in functional
programming!®. Syntactic of not, Forth abstraction features have proved to be effec-
tive and they do allow to abstract to a high level, despite the language being often
used on the bare metal without even an operating system. Due to its simplicity,
like Lisp, Forth has been independently re-implemented many times, by building
some core primitive words in assembly and then writing the rest of the system in
itself. The language is so small that hardware implementations exist [43, 34|, and
its key proponents such as Chuck Moore exhibit a cultural tendency to reject all
conventional software as bloated and hopelessly overcomplicated [60].

Finally some classic object-oriented systems such as Smalltalk are fairly minimal-

149016 correction: I have since learned that “)” in its role shown above is not actually a word. In
actuality the definition of “(” discards all the input text up to and including the first “)” character,
in a way analogous to, for example, “s"” and “"”; this solution avoids the need for the comment
closing character to be delimited with whitespace. The comparison with “:” and “;” remains valid,
despite the slightly different nature of the comment solution.

5Qur favorite example is with-mutex (for example as in [21, §Mutexes and Condition Variables])
in a shared-state concurrent language with exceptions: with-mutex executes some given statements
in a critical section so that a mutex is acquired at entry and released at exit, including when an
uncaught exception causes a jump out of the critical section. It is easy to define with-mutex as a
macro, and where macros are not available it can still be simulated using a higher-order procedure,
at some loss of elegance. Without either of these features, the user is forced to duplicate code.

14 Chapter 1. Introduction

istic as well, and provide relatively strong procedural abstraction. Their example
suggests reflection as a further strategy to help build complex programs: in object-
oriented systems the state of each computational entity in the running program
is available to the program itself, which can query objects for their interfaces at
run time. Such runtime type information also provides the foundation of dynamic
method dispatching, but we find this style of late binding to be less interesting for
our purposes, serving better as a practical modelling tool than as a foundation for
a core language.

1.4 Our solution

What kind of language do we want? In such a vast design space there is no clear
answer, and committing a decision appears dangerous. Even with no breakthrough
in sight at this particular time, our topology of §1.1 might even get enriched by
entirely new dimensions in the future.

Of course we do have opinions about what kind of language would be better
to solve the software crisis, and we will not even try too hard to hide our personal
preferences as the description unfolds; but opinions are not science. Lacking a silver
bullet, the best course of action seems to leave our design open-ended and follow
in software the lesson of RISC, eschewing any particular focus or specialization in
exchange for wider applicability.

In order to achieve Steele’s vision in [85], our language:

e will be built on a very small core, like Forth, but in a form more amenable to
formal reasoning;

e will provide strong syntactic abstraction features, like Scheme does, plus trans-
forms, in the interest of expressivity;

e will provide reflection, like object-oriented systems;

e will not depend on either static or dynamic type checks in the core; such
systems can be added as extensions;

e is meant to be practical, and efficiently implementable.

We call our language “¢”, following the convention of naming small variables in
Mathematical Analysis. When written in the Latin alphabet as “epsilon”, the initial
“e” in its name should always be lowercase.

A personality is a language made of the € core plus extensions, in analogy with
research operating systems implementing several different APIs on top of the same
microkernel [96]. Personalities may reach very far from the core, as our transform

examples above show.

1.5. Summary 15

We anticipate the development of complex!® and widely diverging personalities,
viewing the emergence of incompatible dialects, so feared in some communities,
rather as a sign of health.

It is unfortunate but very possible that in a setting where a strongly extensible
language is adopted, a new separation of programmers and meta-programmers (as
personality developers) will follow the existing divide between programmers and
language implementors; we do not claim to be able to cover such a cultural gap, but
we mean to substantially ease the work of the second group.

The Programming Languages discipline needs more experimentation and proto-
typing. Let people play, and the language will grow.

1.5 Summary

Programming languages have traditionally been diverse in paradigm, typing policy
and concurrency model. The current trend of hybridization makes languages more
expressive, but also much harder to reason about; moreover most current languages
remain difficult to extend and lacking in syntactic abstraction features.

In keeping with the philosophy of Scheme but bringing it much further, we
propose the new programming language € as an example of an alternative style
of language definition in which strong abstraction capabilities allow the end user
to express the needed linguistic features as translations into an extremely simple
core language which is easy to reason about. A personality is a library of language
extensions, in fact defining a new language in ¢ itself.

We argue in favor of language experimentation, recognizing dialect proliferation
as beneficial in the long term.

16The composition of extensions is a difficult problem, for which no general solution is apparent:
see §5.5.

CHAPTER 2

The core language ¢

In this chapter we are going to formally describe the core language €9 by giving
a small-step operational semantics for it and stating under which conditions an
implementation is bound to behave according to the semantics.

As the foundation of much of the rest of this work, the specification will be used
in §3 for describing the language reflective features, in §4 to prove correct a static
analysis, and in §5 for defining syntactic extension semantics.

Contents
2.1 Features and rationale 17
2.2 Syntax . . .0 i e 20
2.3 Semantics and thereal world 22
2.4 Configurations ittt 24
2.5 Small-step dynamic semantics, 30
2.6 One-step dynamic semantics 40
2.7 SUMMATY .« ¢ ¢ v v v v v b o e v v v et e e e e e et 42

2.1 Features and rationale

Our core language €9 must be easy to reason about and efficiently compilable, has
to include reflective features providing access to the program itself, and allow for
parallelism. On the other hand the language does not need to be especially friendly
to human users, since programmers will normally access it by means of higher-level
syntactic extensions.

Satisfying such a set of requirements yields an idiosyncratic language whose ex-
treme simplicity risks being overlooked at a first glance, obscured by some slightly
unusual design choices.

Before formally specifying g’s syntax and semantics, it is worth to clarify the ra-
tionale of some design decisions.

2.1.1 First order

g is a first-order call-by-value expression-based imperative language with mutually-
recursive procedures accepting zero or more parameters and returning zero or more
results, where procedures are globally defined in a flat namespace.

18 Chapter 2. The core language ¢

The language is first-order: no anonymous procedures exist, and procedures can
not be passed as parameters or returned as results’.

Variable references are trivial to resolve: a block form is provided for binding
local variables, which take precedence over procedure parameters, which in their turn
take precedence over global variables. Since variables bound in other procedures are
never accessible no other scoping rule is necessary.

Expressions return values and are allowed to have side effects; no looping form
exists, and since recursion is only permitted at the top level among global proce-
dures no explicit fixpoint operator is needed. This sets apart €y from most functional
languages, as the language of ¢g expressions not referring global procedures is not
Turing-complete.

The language exhibits relatively low-level features, making it easy to write a sim-
ple compiler with a clear efficiency model for non-self-modifying programs; Control
Flow Analysis is also trivial, since all callees are explicitly identified by name at call
sites. No escape mechanism such as exceptions, longjmp or first-class continuations
is provided at this level, so evaluation strictly follows an intuitive stack discipline; in
fact ¢ is stack-implementable, and after macroexpansion and transforms have run,
the residual ¢y program does not necessarily require garbage collection.

2.1.2 Reflection

The current set of procedures is part of the global state of ¢p, and procedure def-
initions are accessible to the program for both reading and writing; this allows a
program to analyze and modify itself.

Compilation in €y consists in examining the current global state in terms of data
and procedures, and producing as output a low-level program which, when executed,
will reproduce the current state, in a style reminiscent of some Smalltalk systems
and the Emacs unexec hack [47, §Building Emacs|.

An ¢p compiler can be an ordinary set of g definitions, running on top of the
interpreter; in this sense we can say that the compiler, if any, is part of the program
being compiled, rather than an external tool; and in the same way the user is free
to build other meta-level tools such as code analyzers, transformers or optimizers.

2.1.3 Handles

Since a program has to reason about itself, ¢y needs some mechanism for unam-
biguously referring to program points, also distinguishing different occurrences of
otherwise identical syntactic forms. For this reason each syntactic form contains a

"We are going to relax this restriction in the implementation for efficiency’s sake; anyway,
as shown in §5.4.1.2, it will be trivial to automatically transform any program using “procedure
pointers” into an equivalent first-order program. Closures will be remarkably more involved to
define (see §5.4.4.4).

2.1. Features and rationale 19

unique identifier which we call handle, the only requirement being that each expres-

sion of a program have a different handle.

At the implementation level it is reasonable to think of handles as unboxed integers

or pointers to unique objects, but the specific nature of handles as a data type is

immaterial: in practice the only relevant feature of a handle is its identity.
Handles are contained in expressions at all nesting levels, so that subexpressions

at any depth may be referred by global names.

It is easy to associate information to handles, typically using global tables.

2.1.4 Primitives

The language specification should be complemented with a set of “predefined” prim-
itive operators and data types for such operators to act upon, integer arithmetics
being the obvious example; other useful primitives include memory allocation and
side effects, and input/output. Primitives may accept parameters, return results
and affect the global state but, the rationale being analyzability, they may not al-
ter program control; this prevents “jumping”’ operations of the kind of exceptions,
longjmp [37| and call/cc |79| from being implemented as primitives.

In the following we will not assume any particular set of primitives, limiting
ourselves to some reasonable constraints which the particular primitives have to
satisfy.

We do not dwell further on the specification of primitives which are to be imple-
mented at low level, in practice using C or assembly language; a formal semantics
of such low-level definitions is outside the scope of the present work. When work-
ing with any particular €9 or € program, we will always take the set of available
primitives as fixed.

2.1.5 Bundles

We allow ¢ procedures and expressions to return any number of results, including
zero; such as decision being more a concession to efficiency [8, 16|, than an attempt
at restoring symmetry between input and output.

A bundle is an ordered sequence of values which may be the result of a computa-
tion. The only feature distinguishing a bundle from an ordinary n-uple or list is the
fact that bundles are not treated as data structures and in particular are expressible
but not denotable: an €y variable can only refer to one object, even if an expression
is allowed to return a bundle of any size; the rationale being, of course, that no
bundle data structures need to be expensively allocated and destroyed at runtime:
each separate bundle element will be simply assigned a stack cell or register, possibly
not even consecutively: no single “value” represents the whole bundle.

In this sense bundles bear resemblance to the the Common Lisp and Scheme
multiple values feature [4, 79|, with the important difference that in &g callers do
not ignore all results except the first one by default.

20 Chapter 2. The core language ¢

In order to work on bundle components, £¢’s block form binds up to as many
variables as the dimension of the bundle that its bound expression evaluates to;
hence ¢ blocks also serve the purpose of “destructuring” bundles, which in practice
simply means locally naming their components.

For example if a “quotient-remainder” primitive returned both the quotient
and the remainder of two naturals (and indeed many hardware architectures provide
such a machine instruction) a block could compute the quotient and remainder of
some parameters, name the results respectively = and y, and evaluate a body in an
environment where such variables are visible. It is worth to stress that at runtime
this naming does not entail any moving, copying or — worse — memory allocation.

It is useful in practice not to always name all the components of a bundle, in
particular for using nested blocks to simulate a statement sequence where the results
of the intermediate steps are irrelevant; more in general, often one wants to ignore
the result of a subexpression.

Bundles do complicate somewhat expression composition and are a possible cause
of errors, but the performance gain they offer seems hard to obtain automatically
by compiler optimization only. Recursive procedures returning more than one result
seem a quite compelling example.

Of course personality implementors aiming for very simple extensions are always
free not to use bundles, or for that matter any other ¢ feature.

2.1.6 Parallel features

The parallel features of €9 appear mundane compared to some of the points above,
limited as they are to creating futures associated to asynchronous threads, and
extracting the result of a given future when waiting for its computation to terminate.

The system lends itself to both shared memory and message-passing, depending
on primitives. In complex personalities aiming at high efficiency on large parallel
machines or clusters, it is reasonable to expect that both styles will be used at dif-
ferent levels.

Again, parallel features introduce some complications into g but are too “funda-
mental” to be left out and then meaningfully reintroduced as language extensions.

2.2 Syntax

We are now ready to formally specify the syntax of g9 expressions, and establish
some terminology about subexpressions.

Let the set of variables X, the set of procedure names F, the set of primitive names

, the set of handles H and the set of thread identifiers T be any numerable sets.

By convention we will use the following metavariables, possibly with decorations,

to represent objects of the respective sets: x € X for variables, f € F for procedure

names, m € for primitive names, h € H for handles, and t € T for thread identifiers.

2.2. Syntax 21

Since the actual nature of “values” is irrelevant for the purposes of this chapter
but has some other deep ramifications, we postpone its discussion until §3.3.1; as
of now we simply speak of a set of values C, using the metavariable ¢ € C for
representing its elements.

For our examples in this chapter it will suffice to just use natural numbers,
writing “A(n)” to represent n € N, booleans b € {#t, #£f} written as “B(b)” pointers
or memory addresses a written as “A(a)” and thread identifiers or futures t written

as “T(t)”.

Definition 2.1 (g9 syntax) We define an eg expression according to the following

grammar:
e =
Th
Ch

|
| [Let =* be e in €],
| [call f e*]n
| [primitive 7 e*]p,
| [if e € {c*} then e else €]}
| [fork f e*n
| [3
| [bundle e*n
We call each separate production right-hand side an expression form or form.
We call the first two cases a variable and a literal constant, respectively. A let
block contains zero or more distinct bound variables, a bound expression, and a
body. A procedure call call expression mentions a procedure name and zero or
more actual parameters. Very similarly, a primitive call mentions a primitive name,
and zero or more actual parameters. The conditional form if comprises a discrim-
inand expression, zero or more conditional cases, and finally the then branch and
else branch expressions. A fork expression has the same syntar as a procedure call,
while a join expression simply contains one future expression. A bundle expression
contains zero or more bundle items.
Each expression and its subexpressions, at all levels, contain unique handles.
We define E to be the set of all ey expressions; we use the metavariable e, possibly
with decorations, to represent its elements. o

The grammar in Definition 2.1 should be hardly surprising at this point, except
possibly for the shape of the conditional and fork expressions.

The conditional expression shape is actually another small concession to efficiency:
operationally, the discriminand expression is evaluated and compared to all the
given conditional cases: if the discriminand evaluates to one of the given constants
then the conditional reduces to the then branch, otherwise it reduces to the else
branch. In many cases this kind of expression, when nested, is easy to optimize into
multi-way conditional branches implemented as jump tables or balanced comparison
trees.

22 Chapter 2. The core language ¢

Of course an gg if expression can also simulate an ordinary two-way McCarthy
conditional, by using a boolean literal as its only conditional case. Writing the
false literal as #f in the style of Scheme, we can simulate the two-way conditional
“(e > €/,€")” by [if e € {B(#£f)} then €¢” else €]}, for some handle hy. Of course
reasonable personalities will define their own friendlier conditionals.

As for the fork expression, at a first look the form given above might appear gratu-
itously complicated compared to an alternative containing only one “asynchronous
expression”. Anyway such an alternative would be difficult to evaluate, as the asyn-
chronous expression could then refer variables bound in the original thread, which
would effectively become nonlocals. For this reason, as elsewhere in g, we chose a
more constrained syntax without too much fear of inconveniencing the user: per-
sonalities will provide higher-level fork operators.

Facilities for defining procedures will be dealt with in §3.

2.2.1 Meta-syntactic conventions for expressions

Since every syntactic object contains a handle, independently of the syntactic cate-
gory or the specific case, when identifying particular components of a syntactic form
instance we may explicitly specify a (meta-)handle in a sub-expression of a given
expression, despite referring to the sub-expression itself just with a meta-variable;
for example hg represents the handle of the join future expression in [join ep,|p,,
regardless of the future expression specific “shape”. We will also omit subscripts
in meta-variables which already contain (meta-)handles unambiguously identifying
instances: for example we will simply write [primitive + ep, ep,]n, instead of the
heavier [primitive + e1p, €ap,]n,- When only one identifier appears as a subscript,
it should always be interpreted as a handle rather than a metavariable decoration.

We will usually name (meta-)handle indices in a top-to-bottom left-to-right order
according to the expression syntax; we may let indices start from either 0 or 1,
according to which option provides more notational convenience, such as avoiding
the occasional “+ 1”7 in subscripts. For example we prefer writing an n-element
multiple expression as [bundle ey, ...ep, |, rather than as [bundle ep,...ep, , |n,-
Since we use handles only to identify occurrences of syntactic forms, their actual
value is always immaterial: starting indices in meta-handle sequences can be just as
arbitrary.

2.3 Semantics and the real world

Before finally specifying g’s semantics it is worth to add one last remark to prevent
some misunderstandings, explicitly delimiting the cases in which an implementation
is compelled to respect the semantics. This point is crucial if we are to speak
about actual programs running in actual machines, rather than just another formal

2.3. Semantics and the real world 23

calculus whose terms unfold into other terms in a Platonic universe where memory
is infinite and checking for error conditions is for free.

As ¢¢ is the underlying common language all personalities ultimately reduce to,
it also represents an efficiency upper bound: a program written in a higher-level
personality will only run as fast as its translation into eg; hence the critical need
for speed, also offsetting the cost of making some implementations unfriendly and
unforgiving of mistakes. But thankfully an unforgiving implementation does not
need to be the only one, and when developing an application a user will benefit
from the feedback of a slower interpreter failing in a more descriptive way than a
“Segmentation fault” message, and possibly allowing some form of debugging.

The nature itself of failure needs to be carefully stated here: what we refer to as
“failure” (§2.5.3) or “resource overflow” (§2.3.1) in the semantics does not necessarily
translate into a dynamic check at the implementation level:

Implementation Note 2.2 (implementation guarantees) A conforming imple-
mentation will behave according to the semantics provided that the execution never
reaches an error configuration and never exceeds any resource limit; otherwise, the
implementation behavior is unspecified. o

Not failing and not overflowing resources is just a sufficient condition for an im-
plementation to respect the semantics; in the implementation a program violating
one of these condition is allowed to crash or silently return any result, possibly even
the correct one: no guarantees at all. If a personality implementor wants to specify
some behavior in one of these cases then it’s her responsibility to perform static
checks on the input code or to include dynamic checks in the generated €9 code, in
order to prevent the conditions for unspecified behavior from occurring.

It may be worth to state explicitly that, as a trivial consequence of Implemen-
tation Note 2.2, an execution consuming an unbounded quantity of any resource
has unspecified implementation behavior.

2.3.1 Resource limits

As it is easy to imagine, our first mention of numerable sets in §2.2 already hid a
caveat: only a finite number of distinct values will be representable in an implemen-
tation, due to the finite nature of address spaces and word sizes.

There exist other remarkable cases of resource limits: for example the amount of
available virtual memory, often dramatically smaller than what the address space al-
lows for; operating systems also usually constrain the number of concurrent threads;
an implementation might limit the stack size to a constant value. All of these cases
will be covered by Implementation Note 2.7.

In the following we will state which resources may be limited by implementations
in explicit Implementation Notes such as the following one; as already explained in

24 Chapter 2. The core language ¢

Implementation Note 2.2, an implementation is not forced to detect the failure at
runtime, and may proceed with undefined behavior in case of resource overflow.

Implementation Note 2.3 (Syntactic resource limits) Each instance of the fol-
lowing items occupies some memory in an implementation; an implementation will
pose a limit to the sum total of all the used memory at any given time, possibly
multiplied by a logarithmic factor.

e variable and procedure names, the cost being proportional to the name length;
e the number of handles;
e cxpression syntactic complexity. o

In Implementation Notes dealing with resource limits such as Implementation Note 2.3
above, we deliberately ignore constant terms: for example if the physical resource
occupation of n items of a certain kind is n - @ + k£ units, an implementation may
simply declare each item to take a units and the total resource availability to be k
units lower than its actual dimension.

Moreover, since avoiding resource overflows is only a sufficient condition for an im-
plementation to respect the stated semantics, we allow Implementation Notes to
describe resource occupation as an upper bound.

At the cost of sounding pedantic, we stress that the statement above does not
limit our reasoning about resources to asymptotic approximations; in fact, where
a given implementation instantiates the precise costs and resource availability, it is
possible to reason about whether a program “fits” the implementation on which it
runs — the rationale of course being that a program overflowing resources is not
any better than an incorrect one.

2.4 Configurations

We are now ready to formally define the mathematical structures used in g¢’s dy-
namic semantics.

2.4.1 The global state

A global state or simply state, always represented with a possibly decorated I'
metavariable, represents the instantaneous condition of an execution; an execution
may access, reading and also destructively mutating parts of a state. We call “ 7
the set of all possible states.

A state is a inherently composite object made of several state environments; by
“environment” we simply mean a mathematical function mapping keys into values.
We do not list all state environments here, since the need of some of them will not be
apparent until later. In order to lighten our notation and to allow for yet-unspecified
components without depending on some arbitrary order, we also avoid traditional
projection and update operators, opting instead for a notation referring components
by name, as if the state were a single “record” of environments.

2.4. Configurations 25

2.4.1.1 Notational conventions for states and environments

It is often convenient to exploit the set-of-pairs nature of relations to represent en-
vironments in an extensional style, as in “{z1 — ¢1,...,2, — @n}”; an interesting
particular case is the empty environment, which is to say a nowhere-defined func-

tion, which we write as the empty set “&”.

If ¢ is the state environment named n in I' then we may write I';, to mean 1J; and
of course we also employ the ordinary notation for function application by writing,
for example, I'),(x) = ¢ or equivalently I, : x — q.

As per the standard update notation, we write “9[x — ¢]|” to represent an
environment equal to ¥ everywhere on its domain except on x, which the updated
environment maps to gq.

Extending the standard notation, we will also deal with updated environments
in the state: in other words we build a state identical to a given one save for
one environment, which has been updated in its turn; we will write “T'[;,” 9]” to
represent the updated state identical to I' except for the environment named n,
which will be I',,[x — ¢] instead of T'y,.

We also write T'[?] to represent a state identical to the state I except for the
state environment named n, entirely replaced by the environment 1.

Our use of brackets for updated states is distinct from the usual environment update
notation, which we also adopt: we write “n[£]” to mean an environment identical to
n everywhere except on the domain of £, where instead it is identical to &.

Notice that, unless we are dealing with meta-labels such as “n” here in §2.4.1.1,
we always write state environment labels in typewriter font: this makes it clear that
we are establishing a label for some state environment at its first mention, without
the need of detailing every time how one label represents the similarly-named state
environment, when the association is always obvious from the context anyway.

2.4.2 (Global and local environments

The global environment is a state environment mapping global variable names into
values, and can be thought of as a partial function X — C.

The global environment keeps track of globally-visible objects (globals or non-
procedures), which are always accessible by a variable name unless shadowed by
a procedure parameter or a local variable, which instead are bound in local en-
vironments: local environments, also X — C functions, take precedence over the
global environment, and or course they are not state environments; we use the p

metavariable for local environments, possibly with decorations.
x> N(42)

global—environ.ment] and the local envi-

For example, when evaluated in a state I'[
ronment &, the variable z in the expression xp, will refer the value N (42); but if

instead the local environment was {z — N (10)}, then N (10) would take precedence

26 Chapter 2. The core language ¢

over the global value in x.

2.4.3 Memory

€g expressions are allowed to perform imperative operations on mutable data struc-
tures: in particular expressions may read or update cells of memory buffers, which
can be allocated and destroyed.

Such operations rely on the memory state environment A — C* as mapping ad-
dresses into mutable word sequences or buffers; we might occasionally refer to each
buffer element as a memory cell.

It is important to notice that the memory state environment models the heap in
the implementation, of which each cell makes up one word: here we are dealing
with cells which can be allocated and destroyed with any strategy, rather than a
simple LIFO policy.

No data structures such as conses, tuples and arrays are hardwired in gg, but
memory makes it easy to define such objects in a personality. The fact that
dynamically-created structures are “made of” memory entails their mutability in
a natural way. Immutability, if one chooses to enforce it for some class of data in a
high-level personality, can be realized with dynamic or static checks which prevent
updating® — but in £(all memory cells are freely mutable, so as not to restrict the
user in any way.

At this point the reader may already be suspecting that the global environment
could be used for simulating memory; while —assuming the availability of certain
primitives— that intuition is correct, §3.2.2 will provide a strong argument in favor
of having a separate memory state environment.

2.4.4 Procedures

A state also keeps track of the current set of procedure definitions.

The procedure state environment is a F — (X* x E) partial function mapping
each procedure name into a pair holding its zero or more formal parameters and
the procedure body; for example, if a procedure named f has formals z;...xz,, and
body ey, in the state I' we write “I'procedures : f = ((Z1...%n), €4)”; we may also omit
angle brackets when no ambiguity can arise, in this case writing “I'procedures : f —
(1'1...{137“ eh)”.

We remind the reader that, since g is a first-order language and all procedures
are global no nonlocals can exist; for this reason there is no need for closure envi-
ronments at this level.

Up to this point we have dealt with the syntax of g9 expressions only, stating that

2 A more radical strategy could involve a syntactic “extension” un-defining or otherwise making
inaccessible the operators needed for the update.

2.4. Configurations 27

global mutually-recursive procedures are also somehow available but without speci-
fying any way of defining them. Because of interactions with the rest of the system
the issue turns out to be more delicate than one could imagine, and we defer its full
treatment to §3; what we can hint at now is that procedures can be defined with
primitives and other procedures, as explained below.

2.4.5 Primitives

We call primitives a set of low-level routines accessible from ey expressions, used
for computation, program reflection or side effects. Primitives range from simple
arithmetic operations such as + to reflection and procedure definition operations,
potentially also involving destructive state updates.

In an implementation primitives are routines implemented in a low-level language
such as C or directly in Assembly. This does not mean however that a primitive is
allowed to “do anything™ primitives must not disrupt the program control flow by
performing jumps or non-local exits or reentries ¢ la longjmp or call/cc: primi-
tives may affect the global state but have to behave in a procedural fashion, always
giving control back to their caller; primitive behavior can actually be modeled by
partial functions taking a fixed number of parameters and returning a fixed num-
ber of results — including an input and output state. Such higher-order functional
specification is a consequence of the fact that primitives, unlike procedures, are not
directly implemented in g and hence lack high-level bodies or any treatable “source”.

A primitive function with in-dimension n and out-dimension m (n,m € N and
n,m > 0) is a partial function (C" x) — (C™ x), mapping an n-uple of values
and a state into an m-uple of values and another state; a primitive is a triple com-
prising the primitive function, its in-dimension and out-dimension, which respects
Axiom 2.10. We call P the set of all primitives, with P = (J,, ,,en{Pin,m) | p €
(€ x)—(Cmx)k

The primitive environment state environment — P maps each primitive name
into a primitive.

Axiom 2.10, defined in §2.5.3 and only needed for technical reasons, will just
affirm that primitive success and failure are mutually exclusive.

From now on we will bend our notation a little further by writing “I'primitives(7)
(c1yeescn, I) =)y ey €, T7)7 01 “Tprimitives () 14 m — m” as needed, to avoid use-
less pedantries such as “p({c1,...,cn),T) = ({c}, ...,), I") where Tprinitives(m) =
(p, n,m)".

As an example, considering the quotient-remainder primitive of §2.1.5 in some
state ' we could write “I'primitives(quotient-remainder)(N(13),N(3),T) =
(N(4),N(1),T)” meaning that the quotient and remainder of the naturals 13 and
3 are (respectively) the naturals 4 and 1, and that the primitive does not affect the
global state; we could also write “I'primitives(quotient-remainder) :4 2 — 27, by

28 Chapter 2. The core language ¢

which we would mean that quotient-remainder has two parameters and two re-
sults — which does not prevent the primitive function from being partial, as indeed
it is. Where the particular state is obvious from the context or irrelevant, we even
write “m 1z n — m” to mean I'prinitives (m) :# n — m, for the appropriate I'.

As a further and possibly more interesting case, we just hint at the fact that
memory operations such as allocating buffers and loading and storing words are
performed by appropriate primitives: this will let us keep the semantics simple,
ignoring the details of memory, and treating memory operations as just another
instance of effects on the global state.

Specifying a complete set of “default” primitives is out of the scope of this work, but
§5 will informally introduce most primitives currently used in the implementation,
while §3 will deal with reflection and program-updating in relation with primitives.

We may informally speak of applicables, when abstracting away the distinction
between procedures and primitives.

2.4.6 Holed expressions

In our dynamic semantics we need to capture intermediate computation snapshots
in which an expression is in the middle of being evaluated.

We define below an extended ey expression grammar, where the hole “0O0” stands
for a subexpression which is yet to be fully evaluated.

Definition 2.4 (e, syntax) We define the set Eq of possibly-holed expressions or

“cg expressions” by the following grammar:

eq ::

Syntactic cases are respectively named: non-holed expression, holed block or holed
let, holed call or holed procedure call, holed primitive or holed primitive call, holed
conditional, holed bundle, holed fork and holed join.

All cases save the first represent properly holed expressions. o

Notice that holes do not occur in all possible expression contexts: this issue is related
to tail contexts.

Moreover, as the nonterminal eg never occurs in a production right-hand side,
no holed expression can contain other properly holed expressions: this “single hole”

2.4. Configurations 29

property reflects €¢’s deterministic sequential evaluation strategy.

2.4.7 Stacks

Rather than resorting to the traditional small-step semantics style [99, §2.6] in which
the computed parts of an expression are replaced with values, here we adopt a more
realistic and lower-level model using explicit stacks and keeping track of “return
points”; this should already be clear at this point from §2.4.6.

We keep two separate aligned stacks per thread for describing evaluation, one stack
representing the dynamic nesting of partially-evaluated expression forms and the
other representing the dynamic nesting of values; we respectively call them the
main stack or even simply the stack, and the value stack:

e The main stack is a sequence of pairs, each pair containing a holed expression
and its associated local environment (§2.4.2): the set of all possible main stacks

is S= (Eg x (X —C))*;

e The value stack is a sequence of objects, each of which being one of a value,
the value separator ‘0", or the activation separator “1”. Value stacks belong to

Ve (Co 1)

A two-stack solution is particularly appropriate because of bundles and is visually
intuitive, but of course efficient implementations for conventional machines will rea-
sonably use a single stack per thread.

We write stacks horizontally, with the top on the left: this is analogous to list
syntax in Lisp and functional languages, and the opposite of Forth conventions.

We usually represent main stacks with the metavariables S and value stack with
the metavariables V', possibly decorated.

2.4.8 Futures

As we have already hinted at in §2.4.7 and will be made more clear in §2.5, evalua-
tion in g9 needs two stacks per thread, along with the global state.

The “main” thread of a computation is called the foreground thread; the global
state holds information about all the others.

We call future state environment the state environment futures holding thread
information. Such an environment simply maps each thread identifier into its stack
and value stack, and belongs to T — (S x V).

Implementation Note 2.5 (global state resource limits) In an implementa-
tion the following resource limits hold:

e cach global environment binding occupies a constant amount of the memory
resource;

30 Chapter 2. The core language ¢

e cach memory cell occupies a constant amount of the memory resource;

each defined procedure occupies a constant amount of the memory resource;

each defined primitive occupies a constant amount of the memory resource;

each thread which is either running or being waited by a join expression in a
background or foreground thread (§2.5.1) occupies a constant amount of mem-
ory.

An implementation may also limit the number of threads running or being
waited for (as above) existing at any given moment, independently from mem-
ory usage.

In all the cases above, some implementations may also scale the total amount of
occupied resource by a logarithmic factor. o

2.4.9 Configurations

A configuration contains information about the foreground thread, and a global
state; of course the global state, among the rest, holds information about the other
“background’ threads.

The set of all configurations is SxV x ; we usually represent configurations with
the letter y, possibly decorated; since configurations are potentially complex when
we show their three components we always omit commas to reduce the visual clutter.

Evaluating a given expression ey in a given state I' entails building an initial config-
uration (ep, @) ! I': An initial configuration always has a main stack made by just
a non-holed expression coupled with an empty local environment, and a value stack
made of just one ¢ separator.

Final success configurations contain an empty main stack and a value stack
{CnCp—1...coc1? holding the zero or more elements of the result bundle in a reversed
sequence, preceded and followed by a “?” separator — the bundle inversion phe-
nomenon being a consequence of the LIFO evaluation style.

For example, assuming a “reasonable” + primitive and some state I', we expect that
by evaluating starting from the initial configuration ([primitive + N'(2),, N(3);,]n,,
@) 1 T’ we eventually reach a final success configuration () W (5)! TV; it is possible
to have I # IV because of background threads already started in T'.

2.5 Small-step dynamic semantics

We are now finally ready to specify €¢’s dynamic semantics.

2.5. Small-step dynamic semantics 31

2.5.1 Small-step reduction

We need to formalize the intuitive notion of reduction. Given two configurations
x and Y/, we say that y reduces to x’' and we write “xy —g X7 according to the
following definition:

Definition 2.6 (small-step reduction) We define the small-step evaluation re-
lation
_—f S (SxVx)x(SxVx) according to the rules at pp. 32-33. In the
rules we always assume n = 0, with the convention that an indexed sequence with
left index 1 and right index 0 is empty.

Each rule has associated a name, written on the left in brackets. o

(49

03 o8endue[o100 oy, ‘g Joidey)

[constant]

(ch, p).S W I'—g S @V T

[variable]

Fglobal—environment [P] AR

(xp, p).S W I' —g S WV T

let
[Let.] ([let z1...xy be ep, in epylp,, p).S IV T —g (eny, p)-([let zi...xp, be O in ep,py, p).S W T
let mz=n
[Let] ([1et x1...xy be O in ep,|pg, p)-S WmCm—1...c2c1V T' —€ (eny, pla1 — c1,22 — 2y ooy — ¢,]).5 W T
[call.]
([call f ehl...ehn]ho, p)S W I — (ehl, p)...(ehn, p).([call f D]ho, @)S uv r
[call.]

[primitive,]

[if.]

T > (x1..2p, e
([call f Olpny, p).S enlep—1l.2cendfV T —g (ep, plzr — c1,22 — €2, ., Tl > Cp1, Ty — ¢]).S WV T procedures : f > (T1...Tn, €n)

[primitive,]

([primitive 7 ep,...€pn, ny, p)-S W I —€ (eny, p)---(€n,, p).([primitive w O]y, @).S 1V T

Corimitives (M) (€1, ooy, T) = () oy el T
([primitive m O]hy, p)-S Wenlen_1l.2cciltV T —g 8 el _q..chépV T Pome ves () (c1 n 1) =< mo 1)

([if ep, € {c1...cn} then ep, else epglny, p).S WV I —g (en,, p).([if O € {ci...cy} then ey, else epglpy, p).S IV T

[i£c]

€ {c1...
([if O € {c1...cn} then ep, else epylny, p)-S WAV T —€ (ep,, p).S WV T ce{ci...cp}

¢
[ite] ([if O € {ci...c,} then ep, else epylny, p).S WV I —g (eps, p).S W T ¢ ¢ fer-ca}

sorjuewos orweuAp dajs-[fewi§ ‘G'g

€€

[fork.]

bundle,
[] ([bundle ep,...ep, |nys p).S WV T —k (epn,, p)...(€n,, p).([oundle O]p,, @).5 UV T

[bundle]

([bundle OJp,, p).S wplen—1l..ec)iV IT'—g S wepcp—1...coclV T

[fork.]

([fork f eny..-h,)hgs p)-S WV T —g (en,, p)...(en,, p).([fork f Olp,, @).5 UV T

fresh ta Fprocedures : f g (‘TO--“rnv eh)

([fork f Olag, £).S tenten_10.2eerdV T —sg § TRV Thpllen: plroT W menmnmenl) U7

futures

join
[J 8] ([jOin ehl]h07 p)S W I'—g (€h17 p)'([jOin D]hov p)S W r

- léutures : t —)
Loinc] < oiy Olnes p).8 TANV T —g S wcqv T (O ter)

S V, T —> S V! T
SV ID—gs VvV IV[E5 V)

futures

[H] ltutures : t — (St, ‘/t)

34 Chapter 2. The core language ¢

It is easy to classify rules into four sets according to the holed expression case
in the top stack pair, if any. We have:

e the basic rules [constant] and [variable];

e expansive rules, one per non-holed expression case, named after the form with
an “e” subscript;

e contractive rules, one per holed expression case (except for the conditional,
which needs two contractive rules), named after the form with a “¢” subscript;

e the parallel rule [||] in the end, standing apart from all the others.

The core ideas of the evaluation are simple, and strongly rooted on the inductive
nature of the expression syntax. Rule groups help to highlight the quite pleasant
symmetry of the system:

e base: we evaluate a “basic” expression found on the top of the stack by popping
it and pushing a corresponding value onto the value stack;

e cxpansion: before we can evaluate a non-basic expression on the top of the
stack we need to evaluate its sub-expressions: so we replace the expression
with its holed counterpart, and push its subexpressions on the stack on top of
it, in an order such that the first one to be evaluated end up on the top;

e contraction: if a holed expression is on the top of the stack, this means that
we have just finished evaluating its subexpressions: pop their values from the
value stack, pop the holed expression from the stack, and proceed: according
to the case this can mean pushing a further subexpression onto the stack or
pushing results onto the value stack;

e parallelism: the parallel rule lets us concurrently perform a reduction in a
background thread, whenever possible.

The LIFO policy outlined above enforces a rigid call-by-value, depth-first left-to-right
evaluation strategy. We find that having such a simple and predictable evaluation
order is very useful for both programming and reasoning about programs.

[constant] is trivial.

In [variable] it should be noted how the (topmost) local environment prevails
over the current global environment in the variable rules. Of course the rule cannot
fire if the variable is unbound.

[1let.] is simple enough: a let block is evaluated by first pushing the let-bound
expression ey, ; when such evaluation eventually ends producing a bundle in the value
stack the let contractive rule can fire, assuming the bundle dimension is sufficient:
then the holed let expression is replaced by the let body on the stack, with an
updated environment in which the first n bundle components are named, and all
m of them are popped off the value stack, implementing the behavior described in

2.5. Small-step dynamic semantics 35

§2.1.5. It should be remarked that the holed let expression “disappears from the
stack” as soon as its body is pushed. This behavior is useful for potentially tail-
position subexpressions: after we reduce a let block to its body, the let block itself
can be disposed of, saving stack space.

[call.]? just consists in replacing the call expression on the top with its holed
counterpart (with an immaterial local environment), and pushing actuals on top of
it, so that they will be evaluated starting from the leftmost one, all in the same
local environment of the call. When actuals are evaluated the call contractive
rule has the opportunity to fire, provided that the value stack contains a topmost
activation with exactly as many 1-dimension bundles as the (current!) number of
parameters of the called procedure, and of course provided that a procedure with
the appropriate name exists. If that is the case the holed call expression is replaced
with the procedure body, and the local environment with an environment containing
only the parameter bindings. It is crucial here not to extend the call-time local
environment, since we want to prevent nonlocal visibility, for efficiency reasons. In
a similar vein to the let case, a tail-position holed call is replaced by the called
procedure body.

[primitive,]| and [primitive_| are very similar to their call counterparts; the
contractive rule cannot fire if the primitive name is not bound, or the primitive
function is undefined. Notice that the primitive function is allowed to return a
new global state, and the contractive rule effectively establishes it for the resulting
configuration.

[if] simply replaces the topmost expression with a holed conditional, pushing
the discriminand subexpression on top of it; when the discriminand is completely
evaluated, either of the two if contractive rules [1£€] and [1£%] may fire, provided
the discriminand yielded a 1-dimension bundle: if the value belongs to the condi-
tional case set, the then subexpression replaces the holed if; otherwise, the else
subexpression does. The conditional expression is replaced by one of the branch
subexpressions without consuming stack space, which is useful in tail contexts.

[bundle.] resembles [call.] and [primitive,]; again the empty environment
associated to the bundle holed expression is immaterial. [bundle.], if the correct
number of 1-dimension bundles is on the top of the value stack, replaces them all
with a single bundle holding all the values.

[fork.] is essentially identical to [call.|, [primitive,] and [bundle.]. [fork.]
is more interesting: if the actual parameter result bundles are 1-dimensioned and
correct in number, they are simply replaced by one future on the value stack, and
the fork evaluation terminates immediately: the concurrent evaluation will take
place asynchronously in a new thread created for the purpose, and associated to the
future identifier in the future state environment. Notice that the thread identifier is
also visible to the new thread as the zeroth parameter, to be used in personalities
for “self-thread-name” forms or thread-local variables.

[join,] replaces the topmost expression with its holed counterpart, pushing its

9

3Trivial error fixed in 2014: the original text mistakenly said “[let.|” instead of “[call.]

36 Chapter 2. The core language ¢

future expression over it; [join,|, provided that a 1-dimension bundle is on the top
of the stack, that the bundle contains a future value and the thread corresponding to
the future terminated, returns the result from the thread. [join,] cannot fire until
the asynchronous thread has terminated.

[||], provided that that a configuration obtained by making a background thread
the foreground thread could reduce, allows to perform the reduction “concurrently”,
in the future state environment.

It is easy to see that in the contractive rules [call], [primitive,|, [bundle.| and
[fork.] the local environment associated to the holed expression will in practice
always be empty, for reachable configurations.

The role of 97 value separators should be clear at this point: the values of the
same bundle are stored on the value stack sequentially, without any separators in
between — and again in reverse order, because of the LIFO strategy. Separators
help establish the correct conditions for a rule to fire, so that no bundle of the wrong
dimension can be used.

The motivation for activation separators “1” is similar but slightly more subtle:
the problem is being able to distinguish a local, temporary bundle from a surround-
ing bundle which is being built on the value stack. Without such explicit markers
it would be possible to pop the “wrong” number of values from the value stack.

Moreover a procedure can be redefined, or even defined for the first time, by
one of its actual parameters. We only define semantics if the number of the passed
parameters is correct, but their good number cannot be determined until* all of
them have been evaluated: hence, before letting a contractive rule fire, we have to
check that the topmost objects in the value stack be all and only the actual values.

At this point it may be worth to remind the reader of Implementation Note 2.2:
markers do not necessarily need to be represented and checked for at run time in an
efficient implementation; quite the opposite, by specifying that some case yields an
error we free ourselves from any implementation constraint.

For this reason we intentionally let, for example, “wrong arity” be an error condi-
tion (§2.5.3) instead of specifying some “fallback behaviour” such as ignoring extra
arguments or providing defaults for missing ones: in practice an efficient imple-
mentation will need to reserve stack frame slots or registers for return addresses,
garbage collection structures or for some other implementation bookkeeping pur-
pose: of course passing the wrong number of parameters will likely interfere with
these conventions. We do not want this to be made more difficult or less efficient just
because of the need of implementing a specific behavior, whose utility was dubious
in the first place.

Unfortunately an implementation cannot let configurations grow to an arbitrary

49014 correction: the original text said “after” instead of “until”.

2.5. Small-step dynamic semantics 37

complexity:

Implementation Note 2.7 (dynamic execution resource limits) Fach instance
of the following items occupies some memory in an implementation (See Implemen-
tation Note 2.3):

e q stack item;
e a value stack item;
e a local environment binding.

Some implementations may further limit the stack item and value stack item number
to another smaller constant, independently from memory usage. o

2.5.2 Sequential reduction

As we have just remarked in §2.5.1, we value the predictability of £g semantics, with
its well-specified evaluation strategy. In the same vein determinism in an evaluation
relation is a desirable property.

It is easy to observe that, save for the parallel rule, the reduction relation is in
fact trivially deterministic, up to the (immaterial) choice of thread identifiers.

Definition 2.8 (sequential small-step reduction) We define the sequential small-
step evaluation relation ___ —% S (SxVx)x(SxVx) according to the
rules on pp. 32-33, minus the parallel rule. o

Interestingly, a sequential reduction can still work with fork and join, and futures
can be passed around and even created anew or joined if their result is ready: since
the only source of non-determinism is the actual concurrent reduction, as long as
no background thread “advances” it is possible to work with futures using only

—

J— E —

2.5.3 Failure

In §2.5.1 we have explicitly shown that there are cases in which the small-step seman-
tics is undefined because rule premises cannot be satisfied. After having formalized
the notion of “correct reduction”, here we are going to exactly specify and classify
failure conditions.

Definition 2.9 (error configurations) We define the error configuration relations
fails because of environments, written as “. _ _ —g ¥x” and fails because of dimen-
111 »”

- —E ¥4, all subsets of the set of configurations S x V x|
by the following rules:

sion, written as

d r obal-environmen
(‘rha P)S W T —E ¥x ¢ Om(global t[P])

38 Chapter 2. The core language ¢

m:(mz=nAV = 1nem_t...cocrlV’
([Let zy...zy be O in epy|py, p).S V I —of ¥y B (1..czenlV’)

([call f Dlpg, p).SV I' —F ¥y

r rimitives(7) ‘# . —> M A |4 e lCn—1l...0CalC1 L V!
([primitive m Oy, p).S VI —g 3y © tives () 14 # leplen—10..elenl}

V£ av’

([if O € {ci...c,} then ey, else epylny, p).S V I —F ¥y

V #£ 1l e —1ep, V!

([bundle Olp,y, p).S VI —F %y

([fork f Dlpg, p).SV I' —E ¥y

V £V
([join Olp,, p).S V I' —E %4 7

The fails because of a primitive relation - - - —g ¥%p € S x V X is a superset
of the relation defined by the following rule:

4
([join O]p,, p).S AV T’ — #%p cF T

The exact definition of - - - —g ¥p relies on the specific set of available prim-
itives, which we intentionally leave open.

We define the generic “fails” relation, written as “- - - —g %7, as the union of the
specific failure relations: (.- —g %) = (..o — ¥x) U (... — ¥p) U (.- —E
%4). We also call final failure configuration a configuration that fails. A final con-
figuration is either a final success configuration or a final failure configuration. o

Since the definition above does not mention background threads at all we have
that failure in a background thread does not propagate to any other thread. We
chose this solution in the interest of simplicity and realism for a core language such as
€0, which should reflect the behavior of system-level facilities. Of course higher-level
personalities are free to implement more complex policies, as hinted at in §2.5.4.

Since failure never propagates to other threads in g, there is no need for alter-
nate “sequential” relations for failure.

_‘(Fprocedures : f g (Il...In,6h) ANV = ?ancn_ll...ZCQZCﬂiV/)

_‘(Fprocedures : f = ($0~--zna 6h) A V = ?ancn—lZ-~-26226121V/)

2.5. Small-step dynamic semantics 39

As a further point of note, above we have chosen to classify the failure of join-
ing an object different from a future as a primitive error, because of the strong
analogy of the condition with a primitive “wrong parameter” error®.

Many actual primitives also fail for some values of their parameters, even when
they receive the correct number of them. For example a division primitive “-+" might

fail on a zero divisor; writing “N(0)” for zero as in §2.2, we get:

([primitive = OJp,, p).S W(0RQEV T —F %p

We intentionally omit a list of all the specific cases of primitive failure, a complete
specification belonging in the primitive definition — with the only constraint of
having failure rules covering all possible failure cases; in other words, given a set of
parameters a primitive either fails or returns a result but no other behavior such as
divergence is possible, as specified by Axiom 2.10, which we are now ready to state:

Axiom 2.10 (primitive “totality”) For any primitive m such that T primstives() 14
n — m in some state I' and for each sequence {cy, ..., ¢y), exactly one of the following

holds:

o there exist ¢y, ..., c;,, I such that T primitives(T)(C1, ..oy Cn,) = (), ..oy € T7);

e for any ho, S,V we have ([primitive m O]p,, p).S 1. 1c IV L —g ¥p. ©

We can prove a result in the same spirit for general expressions: any given
configuration either can be reduced for at least one more step, or it immediately
fails; but it is not possible that a non-failing configuration does not allow reductions
(unless joining a future), or that a configuration simultaneously fails and allows a
sequential reduction:

Proposition 2.11 (reduce xor fail xor wait) Given any reachable configuration
X = (en, p).S V T' we have exactly one of the following:

e there exist ', V' and " such that (ep, p).S V T —Jé S'V'1TV;
o (ep, p).SV I —x;
e there exist t € T, V' € V such that x = ([join O], p).S T (tQWV' T,

PROOF (SKETCH) Since the main stack is not empty, x is not terminal.
I

We are dealing with ___ —g ___ rather than ___ —g ___, hence [[|] cannot fire,

by Definition 2.6.

In any configuration where the top expression is an ey non-holed expression
except for the variable, we may apply an expansive rule or [constant] for ___ —>£
___, leading to an evaluation step: all such rules can always fire independently of
subexpressions, the state of the environments or the stacks (Definition 2.6).

5Tt is easy at this point to mistake such an error for a type error. The difference is actually
subtle, and will be dealt with in §3.3.1

40 Chapter 2. The core language ¢

If x = ([join O]p, p).S T (tNV' T for some t, V' then the thesis follows trivially.

In the remaining cases the top expression is a variable or a holed expression, and
another disjoint set of rules applies. Then one of the contractive rules for ___ —>£ S
or an error rule for ___ —g ¥x, - —E ¥4 and ___ —g ¥p in Definition 2.9 must
apply.

In all the cases above it is easy to see that each configuration matches the premise
of exactly one rule (in particular, since x is reachable, the value stack must have ?
on top); the only nontrivial case is [primitive 7 O], in which either [primitive,]
or a ___ —g ¥p rule applies because of Axiom 2.10. |

2.5.4 Error recovery and personalities

At the level of ¢g all errors are fatal. In the interest of simplicity and efficiency, no
mechanism is provided for handling a case of failure by recovering or retrying. Any
such machinery can be defined in high-level personalities by checking for failure
conditions at run time with explicit conditional expressions to be automatically
generated; in this way it is possible to completely prevent ¢q failures from ever
occurring, if so desired.

As usual and in the same spirit of typing, the personality implementor has the
freedom of choosing an efficient model where failures are always fatal, or a friendlier
alternative where the personality presents an ordinary ¢ configuration as an “error”
state from which the conventionally “normal” execution can resume.

Like for static typing it is also possible to check for the possibility of failures “stat-
ically” at code generation time, and generate fast code under the assumption that
some kind of failure is impossible. The next chapters hint at how one can define
such analyses.

2.6 One-step dynamic semantics

When dealing with “toplevel” g expressions, often we are less interested in the
small-step evaluation relation ___ —g ___ than in its iteration: where only the final
configurations (if any) are of interest it is convenient to completely ignore stacks and
value stacks, restricting our attention to an expression, an initial state, its result
bundle and the terminal state.

Definition 2.12 (one-step convergence) We define the one-step operational se-
mantics relation for expressions __ g .- < (E x) x (C* x) by the rule:

(en, @) 1T —¢ O wepeerl T
en T g {eyeny TV

Similarly, we define the one-step sequential operational semantics relation for ex-
pressions __ Ug S (Ex)x(C*x) by the rule:

2.6. One-step dynamic semantics 41

(en, @) 1T — I O aepen T
ep, T llJé {e1ecny TV

When we have that “ep, T' |g {c1...cny I"” we say that e, in T converges to {cj...cp)
in IV. In the same way when we have “ep T’ Ué {e1...cny T we say that ep, in T
sequentially converges to {cj...c,y in I".

We may omit state names or results when irrelevant in context. o

It trivially follows from the determinism of ___ —»g ___that __ Ug __is also a (partial)
function.

Notice that according to our definition a reduction chain of ___ —g ___ may con-
verge even if some background thread potentially runs forever, when a finite reduc-
tion chain ewxists for ___ —g ___, and hence also for its super-relation® ___ —g ___.

It is also useful to speak of the eventual failure of an expression in a state, ig-
noring the zero or more reduction steps leading to the failure configuration, and the
specific failure configuration as well:

Definition 2.13 (eventual failure) For each error-configuration relation __ —g
g, with fe {7, “X”,“P”, “#7}, we define a corresponding eventual failure relation
ey = Ex by the meta-rule:

(eh,Q)ZP—>ESVP’ SVF,—>E>:<f
ehFUE'Xf

If we have that “ep, I' Jg %57 with f € {“7,“X”, “P”, “#7} we respectively say that
en in I' eventually fails, eventually fails because of environments, eventually fails
because of primitives, or eventually fails because of dimension. o

Finally, we characterize looping expressions and states:

Definition 2.14 (divergence) We define the divergence relation __ g & E x
the following way:

let ey, be an expression and I' be a state; then we say that ep diverges in I' and
we write “ep, T' g” if for any configuration x such that (ep,@) 1 T —>"E" X there
exists another configuration x' such that x —g X'. o

We defined divergence with the parallel reduction relation - —g ___ rather than
its sequential restriction; hence our notion of divergence covers both “busy looping”
in the foreground and waiting forever for a background thread.

It may be worth to stress how, for example, the sentence “ej, in I' does not
converge” has a different meaning from “e;, in I' diverges”, since it is possible that
e, in I' eventually fails. The same problem holds for the phrases “converges” and
“eventually fails”.

We will avoid such wording in the negative.

SError fixed in 2014: the original text mistakenly said “sub-relation” instead of “super-relation”.

42 Chapter 2. The core language ¢

2.7 Summary

We conceived the g core language for expressivity, efficiency and ease of formal ma-
nipulation: e¢ is powerful but idiosyncratic and unsuitable for direct use by human
users, who are expected to only access it through extensions.

After dealing at length with design issues and providing a rationale for g¢ language
we proceeded to formally specify its syntax, semantics and error conditions.

We also described a sufficient set of conditions under which an implementation is
compelled to respect the specified behavior, allowing for both inefficient but friendly
and efficient but unsafe implementations.

The small-step operational semantics is relatively simple and has a deterministic
sub-relation obtained by simply ignoring one rule.

We defined the “one-step” semantics, hiding the complexity of stacks, by iterating
the small-step reduction relation.

CHAPTER 3

Reflection and self-modification

The presentation of g9 in §2 showed the state component as already containing
procedure and global bindings, but did not illustrate any explicit way of updating
either.

In this chapter we will start by discussing global definitions, and then proceed to
clarify what we mean by a “program”; our somewhat unusual solution has important
implications on how programs are loaded, saved, and compiled.

Contents
3.1 Global definitions 0000000, 43
3.2 Programs and self-modification 44
3.3 UnexecC ¢ v v v i ittt ittt it e e e e e e e e 48
3.4 SUMMATY .+ ¢ ¢ v v v v v bt et t e e e e e e e e e e e e e e e 55

3.1 Global definitions

The expression semantics given in §2.6 does not explicitly mention any functionality
to alter the set of procedure or global bindings that we have always considered as
already defined, as part of the state; anyway such functionality is clearly needed: if
not for anything else, at least for defining new recursive procedures, as expressions
can not express recursion without referring global procedures; and, of course, global
definitions are useful for reasons of modularity.

A “traditional” solution to this problem would consist in adding toplevel forms to
€p as a new syntactic category: toplevel forms would comprise a procedure defini-
tion form and a non-procedure definition form; the program would then become a
sequence of toplevel definitions, possibly followed by a main expression returning a
final “result”.

We have several good reasons to reject this simplistic notion of a fixed program
to be written from start to finish and then executed:

e in the spirit of Forth! and Scheme, we want to also support interactive systems
interleaving user input with evaluation and answers;

Tt is not by coincidence that we mention Forth first in this case. One important lesson
of Forth is how complex programs can be written even with no support whatsoever for typing,
provided that each small component is individually testable. We extrapolate the following motto

44 Chapter 3. Reflection and self-modification

e having exactly two toplevel definition forms may be adequate for g, but cer-
tainly not for its extensions: a personality may need global definitions for new
entities such as classes, exceptions, or types. Even syntax is not fixed: we
want to make new entities and their associated syntactic extensions definable
at any point during the user interaction, to be immediately available for use;

e adding toplevel forms to g¢ is not necessary, since expressions are already
powerful enough to express state updates using primitives or procedures;

e a powerful language should let the user update global definitions from any
program point, not just at the top level.

For all these reasons we will simply assume the presence of the global-definition
or self-modification procedures state:global-set! and state:procedure-set!,
to be defined later in §5.4.1.3, p. 95. We also assume the presence of their com-
panion reflective procedures state:global-get, state:procedure-get-formals,
state:procedure-get-body, state:global-names and state:procedure-names.

No toplevel forms are needed?: definitions are expressions like any others, and
can be executed at the top level or just as well within other expressions.

3.2 Programs and self-modification

The last point in the dotted list above, easily the most controversial, illustrates well
the tension between our will of providing an expressive system, and the desire of also
keeping the language easy to reason about and efficient — in mainstream terms, the
dynamic vs. static debate.

At a first look ¢ with global-definition procedures appears flatly sided with the
“dynamic” party, allowing any program to capriciously modify itself at run time; for
example in §2.5.1 at p. 36 we even considered the case of calling a not-yet-existing
procedure which is created by one of its actual parameters. Indeed, we will find use
for creating procedures from arbitrary expressions (§5.4.4.4); but whenever possible
we would still prefer not to renounce to better intellectual manageability, and effi-
ciency.

As a reasonable compromise and a way out of the dilemma, it is possible to freely use
global-definition procedures to let the program reach a final “static” form; after that
point, the program may be analyzed to check for properties and compiled efficiently,
under the assumption that no more self-modifications will occur.

from our experience of working with ML, Lisp and Forth: the less typing, the more important a
Read-Eval-Print Loop.

2Global-procedure-definition procedures are not particularly friendly to use directly, since the
user has to pass expressions as parameters, and expressions are relatively complex data structures
which need to be built. However a friendly definition form is not hard to define on top of global-
definition procedures, by using a macro (§5).

3.2. Programs and self-modification 45

3.2.1 Programs

The most convenient notion of a program, for our purposes, is slightly unusual.
Given a state and an expression, we can imagine to somehow generate a snapshot
containing the “frozen” state, plus the expression.

“Fxecuting” a program then means to fire up evaluation on the saved expression
from the resumed state:

Definition 3.1 (program) Let I' be an g¢ state and ey, be an ey expression; then
we define their corresponding program as the pair (U[fcures], €n) € X E. o

We intentionally disregard the background threads in I'tytures, in order not to have
to deal with execution stacks or partial expression evaluation. Background threads
do not look particularly useful anyway in this context, since the main idea is simply
to use global-definition procedures to have the program self-modify into something
which contains every needed auxiliary procedure and data, before the “main expres-
sion” can be finally evaluated; clearly, the main expression itself will be free to create
background threads.

Of course there is no guarantee that a program, when executed, will not start
self-modifying again.

3.2.2 Static programs

A static program is a program which, when executed, never self-modifies:

Definition 3.2 (static program) Let (I',ep) be a program; then we say that it is
semantically static or static if in no configurations reachable from evaluating ey in
I', the global environment or the procedure environment are different from the ones
m .

More formally, a program (T, ep,) is static if for all (S" V' T") such that (e, @) 1T

+ / / / / /
—¢ (8" V' I") we have that Ugiobal = I'gropar @7d Tprocedures = I'procedures- o

We consider re-defining a global to be self-modification: anyway the user can still
define mutable variables in the style of ML and Forth in a static program, by adding
one indirection level so that a global maps to a memory cell, whose content can be
updated any number of times without affecting its identity. The value of imperative
variables would then be held in the memory state environment (§2.4.3), which does
not affect staticity.

Interestingly, the use of reflective procedures is not problematic even for a static
program: a static program can safely read its own global and procedure state envi-
ronments, which are constant by definition.

Our semantic versus syntactic naming convention is important and deserves some
comments. The convention comes from standard garbage collection jargon [98], and
is used to distinguish between a datum which will not be accessed in the rest of
the computation from a datum which can not be reached by traversing pointers

46 Chapter 3. Reflection and self-modification

from the roots. It is undecidable whether a heap object is “semantic garbage”, so
garbage collection works by recycling “syntactic garbage”, a conservative decidable
approximation (any piece of semantic garbage is also syntactic garbage).

Like the property of being semantic garbage our semantic staticity property
is trivially undecidable, so it would be tempting to define a notion of “syntactic
staticity” involving the use of global-definition procedures in reachable code. Such
attempts are doomed to fail in gg, because of the way global-definition procedures
are defined (§5.4.1.3): in practice, at least with our current set of primitives3, it
is always possible to modify procedures or globals with ordinary memory stores,
bypassing the “high-level” procedures for program self-modification.

Syntactic staticity properties are definable in typed personalities, where dynamic
or static checks prevent the user from writing at arbitrary memory addresses.

In accordance with our open-ended design principles we do not consider an “er-
ror” for a program to be self-modifying; yet staticity remains desirable since self-
modification makes most analyses impossible, prevents many compiler optimizations
including inlining, and indeed challenges the very idea of compilation?.

A static program can instead be compiled and optimized in a traditional way and
as a consequence of our design a whole-program approach, lending itself to global
optimizations [94], feels particularly natural. Since the expressions occurring in a
fixed program are all known, it is easy to build global tables with handles as keys
(§2.1.3), to perform any kind of analysis®.

Particularly in an untyped context, where users are supposed to be competent,
it is reasonable to consider a certain program as semantically static when users de-
mand so by requesting to analyze or compile a program in a modality which takes
advantage of staticity. We stress once more how all such functionality, including
compilers, can be written in the language itself as part of a “library”, and is not
specially hardwired in the system in any way?®.

3Tt would be possible to bootstrap the language with a different set of primitives (8§5.4.1.3),
so that state:global-set! and state:procedure-set! are primitives themselves and do not
depend on others. However such a solution would be unrealistic for a practical implementation,
where identifiers and expressions are data structures like any others.

As a slightly more subtle point, a syntactic staticity guarantee would also have to prevent
destructive modification of expressions, which is possible as well in our implementation of §5.

41t s possible to compile only parts of the code, as several Lisp systems do, but the interaction
between interpreted code and compiled code complicates design, also requiring dynamic invalidation
and substitution of compiled code. It is also possible to have a JIT, or more simply a compiler to
be executed at run time which translates every expression as soon as it is generated, like in the
SBCL Common Lisp system [73].

5 A useful notion for which we cannot claim novelty: the idea of attaching user-defined data to
syntactic objects, now mostly popular because of Java “annotations” (http://download.oracle.
com/javase/1.5.0/docs/guide/language/annotations.html), was already quite explicit in Mc-
Carthy’s 1959 LISP [51].

5We did not implement a complete compiler yet (§5.4.5) but we have a custom bytecode virtual
machine, and the beginnings of native bindings. No fundamental obstacle in implementing an ¢g
native compiler is apparent, and we plan to write one in the coming months.

http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html

3.2. Programs and self-modification 47

Since the set of procedures in a static program is fixed and so is its main expression,
it makes sense to define a notation to show a program in a “linear” (and leaner)
form. It is also convenient to speak about individual program components using the
13

_€ 7 operator, without making state environments explicit.
This will be useful in §4, when we describe a static analysis in detail.

Definition 3.3 (static program linear syntax) Let p = (I',ep,) be a static pro-
gram. If Fprocedures = {fl = (xll"-xlnlaehl)va = ($21...$2n2,€h2),...,fm =
(Tmy T, €,y)}, then we can write the whole program as:

“l[procedure (fi z1,...21,) ep,]

[procedure (fa x3,..72,.) en,]

[procedure (fm Tmy.--Tm,,,) €h,]

€p .
We also write:

e “[procedure (f i..z,) ep,] € p”tomean thatl'procedures : f — (1.2, €n,);

e “ej, € p”, to mean that ey, is the main expression of p. o

3.2.3 When to run analyses

In traditional languages the act of performing a “static” analysis means running some
procedure over the syntax trees from a compilation unit before the unit is compiled
or executed; but with our program notion above blurring phases and units, the very
idea of “static analysis” in the context of € becomes fuzzy.

Activities closely analogous to static analysis remain meaningful: for example in
a statically-typed personality the procedures and global variables which are part of
a program at a given point can still be usefully checked for type safety, independently
from the way each entity was defined in the past evaluation history.

Some analyses may be attempted even for non-static programs. The problem
becomes rather the point in time at which to run analyses: since no “end point”
is apparent, no obvious solution comes to mind. A personality might run some
or even all the analyses right after evaluating each toplevel expression; as a more
radical hypothesis an advanced editor such as Emacs can certainly be programmed
to communicate with an interpreter after each character modification, demanding
to run analyses” and visualizing their continuously updated results.

Of course any similar solution needs to cope with the possibility of yet unre-
solved forward references, which cannot be prevented in general due to the mutual

"The difficulty of this approach is due less to program analysis than to the difficulty of defining
the semantics of incremental modifications to non-contiguous points of a program. This seems
hard to accomplish for ¢ without rebuilding the entire state from scratch at every change, at a
prohibitive cost in performance; caching mechanisms can be conceived for some personalities to
make such operations more efficient.

48 Chapter 3. Reflection and self-modification

recursion inherent in g procedures: it is to be expected and regarded as normal
that analyses fail at some points where the current set of global definitions is “open”.

One likely appropriate time for running analyses is right before compilation, since
no unresolved forward references would be present at that point; but in £ com-
pilation does not necessarily mark any “terminal” point of the evaluation history,
either. It seems reasonable to also allow analyses to be run at any point, on demand.

We will see in §5.4.1.5 how transforms may be conveniently used to automatically
associate analyses to global definitions.

3.3 Unexec

Our programs, be they static or not, are in fact “system images”, which would be
convenient to write to disk for later execution, or even to be transferred to different
computers; the main expression to be saved as part of the program might simply be
a call to the REPL procedure, itself calling the interpreter: that way restoring the
system image would open an interactive session in the saved state.

One could even envisage “snapshots” as a way of saving the current system state
before performing an experimental and potentially destructive modification in an
interactive way: if the modification fails, the user can revert to the old state by
loading the last snapshot, presumably a much faster operation than re-building the
previous state by repeating the same self-modifications which generated it in the
first place from the initial state.

The functionality cursorily described above resembles the Emacs “unexec” hack [47,
§Building Emacs|. Emacs consists of a relatively small Lisp interpreter written in
C which contains the core primitives, plus the bulk of the system implemented in
Lisp; in order to avoid loading hundreds of Lisp files at every startup, the native
Emacs executable is built so that it fires up in the state which would be produced by
loading the initial Lisp files. Building such a functionality in C with native processes
is tricky and requires system-specific low-level code.

Despite the similarity of intent our implementation will be much simpler, and
largely machine-independent.

The general idea of our unexecing strategy is to simply marshal data structures
into a linear representation which can later be read back in an exec phase, based on
unmarshalling.

The composition of unexec and exec yields a state identical® to the original one
up to buffer addresses.

8We are assuming that memory encodes the complete global state, but this assumption breaks
if the state refers system structures such as open files or sockets: unexec can not reproduce any
object out of its process address space.

3.3. Unexec 49

We cannot claim novelty for this idea, considering for example Hoare’s early
intuition in [36, §3.3(2-3)[; in a couple recent systems unexecing exists, but plays a
less central role than in ours: SML/NJ for example supports a “heap2exec” utility
[49]; it generates native code,” yet it can only run on a couple of platforms —
heap2exec is not by any means “the compiler” for SML/NJ, but rather just one tool
among others. Unexec support has also been discussed or experimented with for
Perl, Python and Guile [21].

3.3.1 The stuff values are made of

Since any realistic implementation must work on general-purpose Von Neumann
machines, it is clear that the implementations of all state environments and expres-
sions share in practice the same machine memory; and that memory holds the data
structures we have to marshal.

Encoding details will be made clear in §5.4.1.3; but even without specifying here
how each kind of data is represented, we need to describe the memory model fol-
lowed by all our in-memory objects. As a consequence of other design decisions,
the actual data structures to be marshalled for unexecing will be surprisingly few
in number (§5.4.2).

We can ignore background threads, which are not involved in unexecing as they
are excluded from programs as per Definition 3.1. The remaining values are of only
two kinds:

e unboxed values;
e heap buffer pointers, also called boxed values.

A machine word, in practice not wider than a general register (32 or 64 bits on
modern machines), can hold either an unboxed value, or a pointer to a buffer; a
buffer is a contiguous array of other machine words in heap memory. Pointers are
always initial: we preferred to simply avoid interior pointers as they may exhibit
bad interactions with some garbage collection algorithms which we may want to
adopt in the future [98], even if ours has no such restriction (§6.3.2).

Unboxed values are often used for fixnums, which is to say fixed-range integers,
represented in two’s complement on modern hardware. Booleans, characters and
enumerates also fit comfortably in the range of unboxed values. No provision is
made for objects smaller than a word: at this level, one word is the smallest repre-
sentable datum. Complex data containing multiple “fields” usually need to be boxed,
but if all fields put together fit within the width of an unboxed datum, they can also
be packed into a single word: from the point of view of the memory model there
is no difference between a single-field and a multi-field unboxed object. Efficient

9Keeping the two functionalities separate has the advantage of providing a working unexec
feature also on platforms where a native compiler is not implemented.

50 Chapter 3. Reflection and self-modification

implementations of dynamically-typed personalities are free to reserve some bits as
tags in unboxed objects and pointers [35], in the case of pointers exploiting the fact
that allocation alignment will free at least two or three bits for all buffer addresses,
on current byte-addressed machines (§6.3).

Some values are in practice necessarily boxed, notably reified expressions; as a
consequence in some cases what we informally called a “value” in §2 is actually a
function of the pointer, which we use as a reference to the entire object to pass
around, plus all the memory which it refers, closed under the “points-to” relation.

Values can then be visualized as a graph, possibly containing converging edges
and cycles.

It is in practice possible to alter memory to change a boxed datum component
even when such value does not appear as “mutable” in the semantics, for example
by using a store primitive on an expression datum. Such practices would entail prim-
itive failure'® and hence not respect the hypotheses for implementation guarantees
(see Implementation Note 2.2); the fact that they are possible does not constitute
a violation of €9 semantics.

The following linearized textual format for memory data structure including ad-
dresses is very convenient for debugging the implementation and also as a generic
fallback “untyped printer”:

Syntactic Convention 3.4 (memory dump) We dump a given datum into a
string of colored characters, according to its shape. There are two cases:

e an unbozed datum is written in green in decimal, as a two’s complement signed
integer;

e a pointer is written as a hexadecimal number, prefived by the string “0x”;

— if the referred buffer occurs for the first time in the data structure (depth-
first left-to-right), its address is written in red followed by a dump of its
buffer elements between brackets, with consecutive content words sepa-
rated by a space;

— if the referred buffer has already occurred, its address is written in yellow
and the buffer content is not repeated. o

With some practice it is not difficult to make sense of quite complicated data struc-
tures by reading memory dumps. Despite not being strictly needed to parse textual

10%We did not specify explicit rules for our chosen set of primitives, including preconditions to be
satisfied to avoid failure; however we can quickly hint at a solution: we can imagine that each buffer
contains an initial boolean tag word, recording its mutability or lack thereof; the store primitive
will only permit to write mutable buffers, and another primitive will be available to change a
mutability tag from mutable to immutable, but never the converse. Load and store primitives
would implicitly skip the tag word in the offset they receive (§5.4.1.3).

Of course the implementation does not need to actually represent the mutability tag word: Imple-
mentation Note 2.2 permits us to assume that no failure occurs, and still respect our specification.

3.3. Unexec 51

dumps, color makes it easier for humans to recognize a structure’s shape at a glance.

In most cases (but not all: see the discussion of hashes in §3.3.2.2) the actual nu-
meric address held by pointers is not relevant for algorithms, and a pointer simply
“identifies” a certain buffer, independently from its specific placement in memory.
It is hence reasonable to represent data graphically, ignoring addresses and simply
using arrows for pointers, multi-slot boxes for buffers, and numbers for unboxed
data.

Such “address invariance” is fortunate, since usually we do not have control over
buffer addresses at allocation time'!, hence we cannot reliably re-create a buffer
at a specified memory address. What the composition of marshalling and unmar-
shalling will accomplish, then, is the reproduction of the data structure graph (Fig-
ures 3.1 and 3.2). For example, after marshalling and unmarshalling, the data
structure dumped in Figure 3.2 might be “cloned” into 0x26aaaf0[0x2899220 [42]
0x3078920 [0x2899220 0]].

57

. - 3

!

_2 —
T

Figure 3.1: A circular list holding the fixnums 57, 3 and -2, whose dump could be
0x27032d0[57 0x279ead0[3 0x28a66e0[-2 0x27032d0]]1].

|

Figure 3.2: An example of sharing: a two-element list using 0 as a terminator whose
elements both point to the same one-element buffer, holding the fixnum 42. One
possible dump is 0x29ecd90[0x2714220[42] 0x29549f0[0x2714220 0]].

3.3.2 Marshalling

Textual dumps as per Syntactic Convention 3.4 could serve as a marshalling format;
however our implementation marshals data structures into binary files, for efficiency

1 System libraries ultimately choose data structure addresses, providing very few guarantees.
Sometimes the problem is made even worse by deliberate address space boundary randomizations
performed for security reasons [74].

52 Chapter 3. Reflection and self-modification

reasons. Since specific pointer values are immaterial, in marshalling we replace
them with sequential 0-based identifiers, which enables some minor optimizations.
The logic of marshalling and unmarshalling algorithms resembles moving garbage
collecting algorithms such as semispace [98], which have to recursively “clone” data
structure graphs.

Similarly to textual dumps, when marshalling, the idea is to recursively trace a
data structure keeping into account which buffers we already visited; marshalling
produces a sequence of zero or more “buffer definitions” followed by the single main
object, be it a pointer or an unboxed value. Pointers are encoded as buffer indices,
following the definition order.

Conversely, the unmarshal procedure will allocate and fill buffers, and then re-
solve buffer identifiers into pointers in a second pass.

In our current implementation each file field is a 32-bit big-endian word'2. A binary
dump (see Figure 3.3) begins with a word holding the number of buffers, followed
by the same number of “buffer definitions”, and finally by the “main object”; each
buffer definition contains a word encoding the buffer size in words, following by as
many “elements”, each element containing two words: either a 0 tag for an unboxed
object followed by the content, or a 1 tag for a boxed object followed by the buffer
index (in the order of buffer definitions, 0-based); the main object is one further
element.

buffer-no times
A

buffer-no (element-no ((0|1) fiznum)*)* (0[1) fixnum
—_—

element-no times

Figure 3.3: Binary dump file format. Each of buffer-no, element-no, 0|1 and fixnum
is encoded as a 32-bit big-endian word.

3.3.2.1 Boxedness tags

Up to this point we have assumed that marshalling, and textual dumping as well,
can discriminate between pointers and unboxed objects; but this it not possible at
the hardware level.

On the physical machine pointers are memory addresses, which is to say numbers,
and as such in principle indistinguishable from unboxed objects such as fixnums.

12Using 32-bit rather than 64-bit words helps to avoid relying on non-portable behavior by
mistake when dumping very large unboxed data. We could reduce tag words to bytes or even
single bits, but particularly in the latter case it is not clear whether the denser format would
compensate for the additional required shuffling in terms of time efficiency. Space consumption
is not a problem: typical unexec binary dumps have sizes ranging in the order of one to a few
megabytes.

3.3. Unexec 53

Modern hardware and operating systems tend to guarantee that objects will not
be allocated at very low addresses, so in practice it may be safe to assume that all
pointers have a numeric value larger than some constant such as 2'¢ [5]; alignment
causes all pointers to be multiples of the word size, possibly times some other small
factor; however many large fixnums remain effectively impossible to discriminate
from pointers.

The solution is providing a one-bit boxedness tag associated to each datum, plus
a dimension field per buffer — dimensions tending not to be overly problematic in
practice!3.

The bit can be stored within each word itself, if reducing its payload width
is acceptable; otherwise a much less efficient but more flexible solution consists
in representing all objects as boxed two-word buffers, using one element as the
boxedness tag and another for the payload. We implemented this latter strategy, as
it was slightly easier to integrate with Guile (§5.4.1).

In either case, both g9 primitives and the memory management system should
keep boxedness tags into account: this will slow down arithmetic operations and
possibly complicate garbage collection. On the other hand, some garbage collectors
(for example OCaml’s) already require the same tagging strategy for their own pur-
poses: where such a collector is used anyway boxedness tags cause no additional
overhead.

Since boxedness tags are expensive it is conceivable to provide two different run-
time libraries, a tagged runtime associating a boxedness tag to every word and a
length field to every buffer, and an untagged runtime directly using the machine
representation: dumping, marshalling and unexecing will only be possible on the
“tagged” runtime, but the “untagged” runtime will be more efficient. One interest-
ing feature of this solution is that, since unmarshalling does not rely on tags, the
untagged runtime can always be used as a last stage for a program which has been
developed on the tagged runtime, before being unexeced for the final time. In case
of compiled code, a (presumably static) compiled program should probably always
use an untagged runtime.

Boxedness tags, when present, can also be used by primitives to perform some
dynamic checks and prevent out-of-bounds errors in a very crude form of dynamic
“typing”, which has value when debugging. In this view it might make sense to pro-
vide three different runtimes: “untagged”, “tagged checked” and “tagged unchecked”.

Our implementation currently contains only a tagged checked runtime. Imple-
menting the other runtimes is not hard, being mostly a matter of using C prepro-
cessor macros to wrap object accesses; we will provide the two missing runtimes as
soon as we eliminate the dependency on Guile.

13 A memory system organized in the BiBOP style (§6) — not necessarily a garbage collector —
would permit not to represent them at all in the most common cases.

54 Chapter 3. Reflection and self-modification

3.3.2.2 Marshalling properties

Since we have not formally specified marshalling and unmarshalling algorithms, here
we simply assert their properties without proof, as guarantees to be provided by an
implementation.

Again, the strong resemblance to moving garbage collectors is not coincidental.

We first need to specify exactly what we mean as the corresponding substructures
of an object, “before and after” marshalling:

Definition 3.5 (marshalling correspondence) Let ay be an object which is mar-
shalled into a binary dump, itself unmarshalled into the object by. Then, by induc-
tion:

e ag corresponds to by;

e if a corresponds to b and both a and b are pointers to n-element buffers, then
the i-th component of the buffer pointed by a corresponds to the i-th component
of the buffer pointed by b for any 0 < i < n. o

Marshalling has to “preserve structure”, which is to say has to reproduce the origi-
nal pointer graph, mapping buffers into buffers and unboxed objects into unboxed
objects:

Axiom 3.6 Let a correspond to b. Then we have that a is unboxed if and only if b
1s unbozed. For every n € N we have that a is a pointer to an n-element buffer if
and only if b is also a pointer to an n-element buffer. o

Axiom 3.7 Corresponding unboxed objects are equal provided that they both fit into
a dump word payload. o

Corresponding pointers are not guaranteed to be equal'®, but marshalling “preserves
equality” without introducing or eliminating sharing, in the following sense:

Axiom 3.8 Let ai be a pointer corresponding to by and as be a pointer correspond-
ing to ba; then we have that ay = ag if and only if by = bs. o

As a consequence most operations over pointers continue to work with their in-
tended semantics after unmarshalling, including checking pointer equality — but
checking whether an address is numerically smaller or bigger then another may
yield a different result.

Interpreting pointers as fixnums and doing arithmetic over them, for example
to compute a hash function, in general will yield different results before and after
unmarshalling. But using only the unbozed elements of boxed structures yields the
same results after unmarshalling, except in case of overflow.

We do not want to assert that they are necessarily different, because in practice garbage
collection might intervene destroying the original object before its corresponding version is built,
and it is conceivable that under unusual circumstances the unmarshalled object may reside at the
same address as its corresponding original version.

3.4. Summary 55

3.4 Summary

Instead of hardwiring definition forms into the language syntax, we can keep the
language simpler by providing procedures to update procedures and global variables.
These procedures may be used anywhere, and allow for powerful self-modifying code.

“Static” code, on the other hand, has the advantage of allowing analyses and
being efficiently compilable. A state where no more self-modification takes place
can be reached incrementally, by successive self-modifications.

Having access to the current global state permits to save a snapshot of the
system as a data structure, in a way similar to the Emacs unexec hack in terms of
functionality, but implemented much more simply by data structure marshalling.

Marshalling relies on boxedness tags, which can be made optional for higher
performance.

CHAPTER 4
A static semantics for «g:
dimension analysis

The core language g as described in §2 is much simpler than other formally-specified
languages such as SML, whose description [58, 57, 59| looks strikingly complex for
a “small” language; Scheme Standards include non-normative semantics for some
language subset in appendices [70, 20, 41, 79]; mainstream languages have no formal
specification at all.

To make a realistic argument for the practicality of our €y semantics we are
going to show an example of its application by formally describing a static analysis
of bundle dimensions for static programs (§3.2.2), and then proving it sound with
respect to the semantics.

We chose to deal with bundle dimensions in this sample analysis because bundles
are interesting as a slightly unusual feature, but of course dimension analysis has
no privileged status: just like any other static analysis in €, dimension analysis can
be used as in ML for preventing runtime errors at the cost of also rejecting some
correct programs, or just to obtain warnings, or not at all; and of course any number
of analyses (or “type systems”) can run side by side on the same program; it is up
to the personality implementor to decide what to do with the results.

Contents
4.1 Dimension inference L 000000 57
4.2 Semanticsoundness 0000 e e e e e 63
4.3 Reminder: why we accept ill-dimensioned programs 70
4.4 SUMIMATY .+« ¢ ¢ v v v v v v v v o o o o o o o o oo o oo e e oo 71

4.1 Dimension inference

In analogy with Hindley-Milner type inference [22] we would like to define a proce-
dure automatically assigning! a dimension to every expression in a static program,

!An alternative approach based on checking user-supplied annotations would have been pos-
sible, since in practice only few expressions will have a dimension other than |1|, which could be
assumed as the default case. Inference is however even less obstrusive, and does not seem to require
a substantially different formalization.

58 Chapter 4. A static semantics for ¢o: dimension analysis

where the dimension represents a conservative approximation of the size of the bun-
dle the expression may evaluate to at run time.

Intuitively, we want to associate dimension “one” to constants such as 42, and
also to all variables such as x,, since non-singleton bundles are not denotable. In the
same spirit, a two-object bundle such as [bundle 10, [primitive + 1p. 25,0,)0,
would have dimension “two”, and of course the zero-element bundle [bundle |,
would have dimension “zero”.

Anyway by following this line of reasoning alone we get stuck very soon: for
example, what dimension should we assign to a call to the procedure f17
[procedure (f1 z) [call f2 xp,]|p,]

[procedure (f2 z) xp,]

[Call /1 42h5]h4

Of course the answer relies on f1’s definition, and in particular on the dimension of
its body. But f1’s body consists of a call to f2... It is already clear that dimension
inference has to work on an entire program, using a fix point construction of some
sort: in the fashion of type inference, the analysis will deduce a set of constraints
from a program (for example: f1 returns a result with the same dimension as
the result of f2; f2 returns a singleton bundle; the main expression has the same
dimension as the result of f1), and attempt to resolve them.

4.1.1 The dimension lattice (N], m, L)

It is easy to see how our dimension domain needs to be at least slightly richer than
the set of natural numbers N, for example by looking at the main expression of the
following program:

[procedure (f) [call f |n,]

[call f],

Since f never returns anything the analysis cannot discover any constraint on the
dimension of its result, other than a trivial one according to which such dimension
is equal to itself. We call “1” the dimension of an expression on which we have no
constraints, such as the main expression of the program above.

As it will be made clear below, in practice only some trivially looping expressions
have dimension 1. From the dimension point of view such expressions are partic-
ularly unproblematic and easy to combine with others, since they can never cause
failures thanks to g¢’s call-by-value strategy: for example passing a parameter with
dimension L to any unary procedure will cause an infinite loop before the body has
a chance of ever being evaluated, and maybe failing.

At the opposite end of the spectrum, some expressions are clearly troublesome;
for example a procedure call with a wrong number of parameters will definitely
yield a dimension failure at run time, if the expression is reached and parameters
converge; we assign the dimension “T” to such trivially failing expressions.

As a slightly more subtle case, and very similarly to Hindley-Milner type infer-
ence, we need to give if expressions a dimension which is the “synthesis” of its branch

4.1. Dimension inference 59

dimensions: when the then and else branches have incompatible dimensions, such
synthesis will be T. For example we assign the dimension T to the inconsistently-
dimensioned expression [if xp, € {1,2,3} then 10p, else [bundle |p,]n,; such an
expression is problematic to compose, because the dimension of the result bundle
varies according to which branch is taken at run time.

Our dimension domain is hence made of the natural numbers N extended with the
two elements | and T: we call this set NI. We can easily define a partial order _ = _
as the reflexive closure of the relation _ C _, where _ C _ = ;o {(L, 7)), ([2], T)}.

//\\
\\//

Figure 4.1: The flat lattice (N], 1,).

The set NI with the order _ = _ forms a flat lattice: for any a,b € N, we call
a U b their least upper bound or “join”, and a m b their greatest lower bound or
“meet”.

In the lattice higher values correspond to more constrained dimensions, with L
representing the absence of any constraint, |[n| with n € N representing a bundle
of exactly n elements, and T expressing several conflicting constraints; the join op-
eration _ u _ is but the “synthesis” mentioned above, yielding the least constrained
dimension which is compatible with both parameters: joining | with another ele-
ment yields the other element, joining |n| with itself yields |n] for every n € N, and
joining |n| with |m| for n # m yields T; joining T with any element yields T.

Occasionally we may also use the set N, defined as N[\{T}.

4.1.2 Definition and properties

We are now ready to formally enunciate dimension analysis, computing a dimension
for each expression occurring anywhere in the program, and for each procedure.

Definition 4.1 (Dimension) Let a program p be given. We define in a mutually-
recursive fashion:

e The dimension function for expressions, a partial function with signature E —
N, that we represent as the relation _:y - = E x Ny

zh i |1 cn iy |1

60 Chapter 4. A static semantics for ¢o: dimension analysis

Ehy ‘# d1 coo €h, H dn
[bundle ey, ...ep, |n, 4 [

d; C|1],foralll <i<n

€hy ‘# d1 €hy ‘# d2
[1et r1...Tn be ep, in 6h2]h0 g do

d; C |m| for some m =n,dy C T

Tign—m ehy i# di ... ep, 4 dy

— d; C|1],foralll <i<n
[primitive 7 ep,...ep, |ny % |M]

fiun—d ehy 4 d1 ... ep, iudy

[call f en,...en,lng 4 d d; C|l],foralll<i<n,dC T
Lee€hn Iho

en, i di hy i# d2 €hy i d3
[if en, € {ci...cn} then ey, else ep,]p, % d

dlgllj,dngudg,dET

f:#n—>d €hy ‘# d1 cee €y, H# dn

d=|1],d; = |1],foralll <i<n
[fork f en,...€n, ny % 1] 1] 1]

ehl :# d1

Goim en Iy 5 1] " =

e the dimension function for procedures (written in relational notation) _ iy _ —
_, with signature F — (N x ND, associating a procedure name with the number
of its parameters and the dimension of its result.

For each procedure [procedure (f xi...xn) ep,]| € p we say f has in-dimension
n and out-dimension d, and we write “f :u n — d” where d is the minimum
fizxpoint such that #(ep,) = d.

Then we define #(-) : E — N as the total extension of _ 4 _, so that #(_) returns
T where _:4 _ is not defined and its same result elsewhere. o

Definition 4.1 depends on the fact that the relation _ :x _ be a function, which is
clearly true because rule premises are pairwise disjoint.

Notice that all the side constraints of the form “d C T” (rules for let, call
and if) are only included for aesthetic symmetry, so that in case of any dimension
inconsistency _ :x _ remains undefined just as in the other syntactic cases, rather
than returning T: of course the total extension #(_) would remain the same even if
we erased such side constraints from _:y _.

Definition 4.2 We call an expression ey, plural if #(en) = |n| for some n # 1,
consistently-dimensioned if #(ep) C T and inconsistently-dimensioned if #(ep) =
T.)

4.1. Dimension inference 61

We intentionally wrote Definition 4.2 so that it makes empty bundles plural, and
trivially-looping expressions not plural. The reason for this choice is bound to the
implementation: only what we call plural expressions requires some non-conventional
implementation technique such as placing a value in a number of registers or stack
slots different from one. Expressions which never return anything do not pose par-
ticular problems — and we stress again that we do not consider non-termination
an error; anyway the existence of expressions e; :x L is the reason why we resist
the temptation of defining “singular” expressions; should e; be both singular and
plural, singular and not plural, plural and not singular, or neither? No solution
seems intuitive, or particularly useful.

It is not hard to see how inconsistent dimensioning “propagates outwards”, from
a contained expression out to its containing expression:

Proposition 4.3 Any expression containing an inconsistently-dimensioned subex-
pression s inconsistently-dimensioned itself.

PROOF Assuming ey, :» T, we have to prove that Cley] :» T for all contexts C[_].
A straightforward structural induction over contexts:

e Clep] = ey, (base case): we trivially have that #(C[en]) = #(en) = T;

e Clep] = [let zy...xy, be C'[ep] in ep,|pn,: since by hypothesis #(ep) = T, by
induction hypothesis we also have #(C’[ep,]) = T & |n]; this makes impossible
to satisfy the conditions of the let rule in Definition 4.1; so the relation _:4 _
is undefined on C[ey], and again by Definition 4.1 we have that #(Clep]) = T;

e Clep] = [1et x1...zp, be ey, in C'[ep]]n,: again we have that #(C'[en]) = T,
and the let rule in Definition 4.1 cannot fire because the let body C’[e]
has dimension T; if the rule does not fire then Clep] = T because _ :x _ is
undefined on the parameter, as in the previous case;

o Cley] = [call f ep,...en, C'len)en, 1 --€hnimlne: again #(C’[ep]) = T by
induction hypothesis; but then there exist a procedure actual whose dimension
is not lower than or equal to |1], and the call rule in Definition 4.1 cannot

fire; _:4 _ is undefined on Cley], hence #(Clep]) = T;

o Clep] = [primitive 7 ep,...en, C'len]en, . ---€h,.m]ho: Same reasoning as the
call case;

o Clep] = [if C'[en] € {c1...cy} then ey, else ep,|n,: again #(C'[en]) = T by
induction hypothesis, which means that the dimension of the discriminand is
not lower than or equal to |1], the if rule in Definition 4.1 cannot fire, hence

_:y _is undefined on Clep], and #(Cles]) = T;

e Clep] = [if ep, € {c1...cp} then C'[ey] else ep,]p,: similar to the let body
case: #(C'[er]) = T, which prevents the if rule in Definition 4.1 from firing;

62 Chapter 4. A static semantics for ¢o: dimension analysis

e Clep] = [if ep, € {c1...ch} then ey, else C'[en]]n,: same reasoning as the
previous case;

o Cley] = [fork f ep,...en,C'enlen, i --€h, . lno: same reasoning as the call
case;

e Clep] = [join C'[ep]]n,: same reasoning as the call case;

o Cley] = [bundle ey, ...ep, C'len]en, 1 --€h, ..]ho: Same reasoning as the call
case. L]

It is also intuitive that replacing a subexpression with another whose dimension
is lower or equal will not raise the dimension of the containing expression, which
makes #(_) a monotonic function:

Proposition 4.4 (#-monotonicity) Replacing a subexpression with another of
lower or equal dimension cannot raise the dimension of the containing expression.

More formally, for any expression context C[_], expression e and expression €', if
we have that #(e) E #(€') then we also have that #(C|e]) & #(C[€']).

PROOF Another straightforward structural induction over contexts. [

The following definition identifies programs where no expression of dimension T
occurs anywhere. As the reader will have anticipated, we are going to prove the
condition sufficient to guarantee a desirable property with respect to the dynamic
semantics.

Definition 4.5 (well-dimensioned) We call the static program p well-dimensioned
if both the following conditions hold:

e for all procedure definitions [procedure (f xi..xn) en,| € p such that f :4
n —d, we have d C T;

e for the main expression ep, € p we have that #(ep,) T T.

We call ill-dimensioned all programs which are not well-dimensioned. o

4.1.2.1 There cannot be a most precise dimension analysis

It would be nice to be able to characterize our definition of an expression dimension
as the “most precise”, but unfortunately our definition is not the best one, and in
fact no such definition can exist.

In order to see why at least at an intuitive level we consider the program:

[procedure (loop) [call loop |p,] €p
[if N'(1),, € {N(2)} then N(42),, else [call loop |n;]n, € P

It is obvious that the main expression loops, but the analysis assigns the main

4.2. Semantic soundness 63

expression the dimension |1] instead of L: hence our definition of dimension does
not correspond to “the best possible” analysis, as it is possible to change it to account
for more particular cases, yielding a more precise result: in fact we can always im-
prove the analysis by recognizing particular patterns in programs — for example by
simplifying statically-determined conditionals at compile time as a first refinement;
but because of the Halting Theorem we cannot hope to cover all possible cases.

This trivial fact prevents us from finding a result similar to the Most-General-
Type theorem in [22].

4.2 Semantic soundness

Before proving the result connecting dimension analysis with €p’s dynamic semantics
we need to define some machinery.

4.2.1 Resynthesization

The idea of resynthesization consists in taking any reachable configuration x and
reconstructing from it an expression e that, if evaluated at the top level in the state
of x, would yield the same result and the same effects as y. Actually we do not
need to specify this equivalence any further, and in fact we will not prove any result
such as reduction-equivalence on resynthesization, since our use of it here is very
well-delimited, due to the technical need of assigning a dimension to all reachable
gg configurations.

We can easily view the content of any value stack V' in a reachable configuration as

[T
l

a list of non-holed expressions Ey, by remarking the intuitive role of “{” as a bundle
delimiter; bundles within V' can be represented in FEy as explicit bundle expres-
sions?. For the purposes of resynthesization it is also safe to ignore “}” delimiters,
since the particular arity mismatches they were conceived to prevent (see §2.5.1)
cannot occur in static programs, our only programs of interest in this chapter.

More formally, we define the translation as follows:

E =
EZiV = EEV?
Ey,..c,tv = [bundle cy...cp). By with some fresh handle A'.

For example V' = 11 203t would be transformed into Ey = ([bundle 1; 2y, |, , [bundle 3 |5,),
with fresh handles h{, b}, hb, h% and h).

We define resynthesization as a relation r, written in functional notation as r(- _);

2 Actually we would need to introduce explicit bundle expressions only for plural bundles in V;
the definition given below avoids this complication at the price of producing some trivial bundle
expressions with only one item.

64 Chapter 4. A static semantics for ¢o: dimension analysis

for readability’s sake we omit the comma between the two parameters of r, since
both tend to be syntactically complex.

Given a stack and a list of non-holed expressions as obtained from the translation
above, resynthesization produces a non-holed expression list:

Definition 4.6 (resynthesization) We define the resynthesization relation r(_ _)
as follows, with the convention that all the prime-decorated handles only appearing
on the right sides be fresh:

(O E)=E
o 7((en, p).S E) =r(S en.E), for any non-holed ep;
r(

([1et x1...xy, be O in ep,|py, p).S €q.E)
=r(([let z1...7n e eq inep,]py, p).S E)

o 7(([call f Olpy, p).S €a,€a, 1 ---Cas€ar-E)
= T(([Call f ea1'-'ean]h67 p).S E)

o 7(([primitive m Olp,, p).S €q,€a,_;1---Cas€a,-E)
= r(([primitive 7 eq,...€q,], p)-S E)

o 7(([if O € {cy...c,} then ep, else epglny, p).S €q.E)
=r(([if eq € {c1...cn} then ep, else epylp, p).S E)

e 7(([bundle O]p,, p).S €q,€a, 1 ---€as€ay-F)
= r(([bundle eq,...€q,]n;, p).S E)

o r(([fork f Olny, p).-S €a,€a,_--€as€a;-E)
= r(([fork f €q,...€a,]n;, p).S E)

o r(([j0in Tliy.)5 0)
= r(([join ea]h6, P)S E) ’

It is obvious from Definition 4.6 that resynthesization is deterministic up to
handle identity, and the same can be said about the value stack conversion defined
above. Since the specific choice of handles is immaterial with respect to dimension,
and accounting for the specific choice of handles would make resynthesization much
harder to work with without any particular benefit, from now on we will commit a
slight abuse of language and speak about resynthesization as a function.

In the following we are also going to need a couple of simple properties of resynthe-
sization:

Lemma 4.7 (“r does not delete expressions”) If r(S E) = E’ for some S, E
and E', then all expressions occurring in E also occur somewhere in E'.

More formally, for alle, if r(S E1.Cle].E2) = E', then there exist E}, C'[_], B, such
that E' = E].C'[e].Ej,.

4.2. Semantic soundness 65

PrROOF By induction on the number of recursive calls to 7. n

Lemma 4.8 (resynthesization shape-independence) The shape of the expres-
sions contained in E does not affect the result of r(S E).

More formally, for all expression sequences Ey, Eq, EY, EY, contexts C[-],C'[] and
expression e, if we have that r(S E1.C[e].Es) = E{.C'[e].E} then we also have that
r(S E1.C|e'].E2) = E{.C'[e/].EY for any other expression €.

PROOF By induction on the number of recursive calls to 7. n

4.2.2 Weak dimension preservation

Resynthesization allows us to gloss over the difference between an g expression and
any configuration reached by evaluating an ey expression, so that we may speak
about the dimension of either; so, in order to further simplify our presentation, we
extend Definition 4.1 by assigning a dimension also to reachable configurations: a
reachable configuration will have the dimension of its resynthesization; or, slightly
more formally, if x = (S V T) is a reachable configuration, then we write “#(x)” to
mean “#(e), where (S Ey) = {e)".

It is not yet clear at this point why r is always defined and always yields a
singleton expression sequence on reachable configurations; we defer the proof to
Corollary 4.10.

The Weak Dimension Preservation property, below, is the central result bridging
€o’s dynamic semantics to dimension analysis by showing that “evaluation preserves
dimension”; in some circles such properties are known as “subject reductions” — or
more intuitively in French as auto-réductions.

Figure 4.2: The Weak Dimension Preservation property (Lemma 4.9): when a con-
figuration x of dimension d can reduce to another configuration x’ of dimension d’
we have that d' C d.

The property is “weak” in the sense that an expression is allowed to reduce to
another expression of lower dimension: as it can be seen from the proof, this may
happen with conditionals: choosing one branch or the other entails replacing the
expression on the top of the stack by a subexpression of it, hence by an expression
with fewer dimension constraints. In particular it is possible that an inconsistently-
dimensioned expression reduces to a consistently-dimensioned one (“from T to d
T7); anyway the vice-versa (“from d T T to T”) cannot happen, which is all we need
for our soundness property.

66 Chapter 4. A static semantics for ¢o: dimension analysis

Lemma 4.9 (Weak Dimension Preservation) Let reachable configurations x, x’
be given, such that x = (Sy Vy T'y) —€ X' = (Sy Vv T'y); now, if r(Sy Evy,) = {e)
then there exists €' such that r(Sy Ey,) = (") and #(e') & #(e).

PROOF Induction is not needed: we just directly prove that, for all cases in which
(Sx Vi I'y) = x —e X' = (Sy Vi I'y), we have that #(r(Sy Ev,,)) E #(r(Sy Ev,)).
We avoid writing handles for converted value stack expressions, since they are im-
material anyway; in this proof we also freely abuse the notation by saying that r

7

returns results which are “equal to” something else, writing “=" without explicitly

stating that the equality is up to handle choice.

e [constant]
(ch, p).SW T —g SV I
r(Sy Ev,) = {definition of r} r(S c.Ey,) = {substitution} r(S,s Ev,,); hence
in this case we have that #(r(Sy Ev,,)) = #(r(Sy Ev,));

e [variable]
(zp, p).SW T —g S0V T
looking at x, we have r(Sy Ey,) = {by definition of r} r(S z.Ey,) = {hy-
pothesis} (e) = {Lemma 4.7, for some C[_]} (C[x]);
looking at x’, we have 7(S,/ Ey,,) = {substitution} r(S c.Ey,) = {Lemma 4.8}
{Cc]), which we call {¢’); since #(c) = |1] = #(x) = |1], by Proposition 4.4
we have that #(¢') £ #(e);

° [lete]
([1let x1...xy, be ep, in epylpg, p).S W I —k (en,, p).([let x;...x, be O in
ehQ]hO, p)S VI
looking at x we have that (S, Ey,) = {definition of r}
(S [let ...z, be ey, inep,]n,-Ey;,); looking at x’ we have that r (S, EVX,) =
{definition of 7} r(([let x1...z, be O in ep,|ng, p).S epn, - By,) = {definition of
r} r(([let 1.z, be ep, in epy]p . p).S Ev,) = {substitution}
r(S [let z1..zn be ep, in epy]y .Ev,) = {substitution} r(Sy Ev,) = {hy-
pothesis} (e): again we have that r(Sy Ev,) and r(Sy Ey,,) are equal to the
same singleton sequence (e) = (€¢’), hence #(e’) = #(e); this proof case is
essentially identical to the proof cases of the other expansive rules;

° [letc]
([let zy...xp be O in ep,lny, P)-S WmCm—1...coc1lV I' — (en,, plr1 —
Cl, T V> €2y ey Ty > Cp]).S W T
looking at x we find that (S, Ey,) = {definition of r, twice}
r(S [let @1..z, be [bundle ci...cm]p; in eny]y.Ev,,) = {hypothesis} {e) =
{Lemma 4.7, for some context C[-]} (C[[1et z;...x, be [bundle ci...cp]pr in en,]p)
looking at x’ we have that 7(.S,/ Ey,,) = {definition of r, twice} r(S ep,.Ev,,) =
{Lemma 4.8} {C[ep,]), which we call (¢’); since by Definition 4.1 a let ex-
pression has the same dimension as its body, it follows that #(e’) & #(e) by
Proposition 4.4;

4.2. Semantic soundness 67

e [call.]
([call f en,-en,lng, p)-S WV I —€ (€nys p)--(en,, p)-([call f Olpy, 2).5
UV I
identical to the other expansive rule cases;

o [call,]

([call f Olpn,y, p).S wplep—1l.. etV T’ —g (en, plz1 — c1,22 — ca, ...y
Tp—1 > Cpe1, Ty — Cp]).S W T

by the rule side condition f takes exactly n parameters and has dimension
n — d for some d. Looking at x we find that (S, Ey,) = {definition of r} r((
[call f ci...calny, p)-S Ev,,) = {hypothesis and Lemma 4.7, for some context
CL1} {Clleall | er...calsy]

Starting at x’, (S, Ey,,) = {substitution} r((es, p).S Ev,,) = {Lemma 4.8}
(Clen]). But ep, and [call f ci...cp]y have the same dimension d by Defi-
nition 4.1, hence by Proposition 4.4 we have that #(Cley]) E #(C[[call f

01...Cn]h6]);

e [primitive,|
([primitive 7 ep,...€p, |ny, p).S W I' —E
(enys p)...(€n,, p).-([primitive 7 OJp,, @).5 UV I':
identical to the other expansive rule cases;

e [primitive,]
([primitive m OJp,, p).S enlen—1..cedfV I —sg S ey, ¢l q...che AV TV,
when T'prinitives(m)(C1, ooy e, T) = {c], ...s &)y, TV
since the rule side condition applies, we have that 7 :x n — m;
r(Sy Ev,) = {definition, twice} r(S {[primitive m ci...cn]p).Ev,) = {hy-
pothesis, for some context C[-]} (C[[primitive 7 c1...cnlp)
r(Sy Ev,,) = {substitution} r(S [bundle cj...c;,]w.Ev,) = {Lemma 4.8}
(C[[bundle ¢}...c,,]n']); since by Definition 4.1 [bundle cj...c],] and
[primitive 7 ci...cn]y, have the same dimension, we conclude by Proposi-

tion 4.4;

o [if.]
([if ep, € {c1...c,} then ey, else ep,lp,, p).S W I' —g (ep,, p).([if O €
{ci...c,} then ey, else epglp,, p).S W I':
identical to the other expansive rule cases;

o [iff]
([if O € {c1...c,} then ep, else ep,lp,, p).S WAV I' — (en,, p).S W T,
when c € {c;...cp }:
r(Sy Ev,) = {definition, twice} r(S [if c € {ci...co} then ep, else epy]p .
By,) = {hypothesis and Lemma 4.7, for some context C[_]}
(C[[if c € {c1...cp} then ey, else epy]p |);
r(Sy Ev,,) = {definition} r(S ep,.Ev,) = {Lemma 4.8} (C[en,]);

68 Chapter 4. A static semantics for ¢o: dimension analysis

by Definition 4.1 we have that #(en,) © #([if ¢ € {ci1...c,} then ep, else
ehg]hé), and we conclude by Proposition 4.4;

[1£]

([if O € {c1...cn} then ep, else epglpy, p).S WAV I' —g (eps, p).S W T,
when ¢ ¢ {c1...cp}:

identical to the previous case;

[bundle,]

([bundle ep,...ep, |ny, p).S WV I' — (epn,, p)...(én,, p).([bundle O]y, @).S
v I

identical to the other expansive rule cases;

[bundle,]

([bundle OJp,, p).S weplen—1l..2c2c1liV I' —g S epep—1...cocdV T

r(Sy Ev,) = {definition, twice} r(S [bundle ci...c,]w.E) = {substitution}
(

r(Sy Ev,), and again we have that e = e

[forke|

([fork f epy...€n, nys p)-SWV T —g (en,, p)...(en,, p).([fork f O]p,, @).S WUV I
identical to the other expansive rule cases;

[fork.]

([fork f Olpny, p)-S enlen—1..0c20c1fV T —sg ST (ENV i len, pleomTt)aimer,enenl) U7,
r(Sy Ev,) = {definition, twice} r(S [fork f ci...cp]p.E) = {hypothesis, for

some context C[_]} (C[[fork f ci...cn]p s

r(Sy Ev,) = {definition} (S T(t).E) = {Lemma 4.8} (C[T(?)]). Since

by Definition 4.1 we have that #(7(t)) = |1] = #([fork f ci..cnly), we

conclude with Proposition 4.4;

[join,]
([join ep,y |y, p)-S WV I' —E (en,, p).([join Olp,, p).S W I
identical to the other expansive rule cases;

[join,]

([join Opy, p).SUT(ANV I' —g S eV T', when Tsugures 1 £ — (O,):
r(Sy Ev,) = {definition, twice} r(S [join T(t)]y,.E) = {hypothesis and
Lemma 4.7, for some context C[_]} (C[[join T (t)]y]);

r(Sy Ev,,) = {substitution} r(S ¢;.E) = {Lemma 4.8} (C[c:]);

since by Definition 4.1 we have that #(c;) = [1] £ #([join T (¢)]n), we
conclude by Proposition 4.4;

(1]
SV —g SV IS V) when Trupures : £ — (Si, Vi) and S; V; T —g
S, v T

here 7(Sy Ev,) = r(Sy Ev,,), hence €’ exists and is equal to e. [

4.2. Semantic soundness 69

The following trivial consequence of Lemma 4.9 allows us to think of r as always
returning a single non-holed expression, when applied on a stack and a value stack
(re-encoded as a list of non-holed expressions) from a reachable configuration:

Corollary 4.10 Reachable configurations resynthesize into exactly one expression.

PROOF The property is obvious for initial configurations, which make up the in-
duction base; Lemma 4.9 proves the inductive case. ™

4.2.3 Semantic soundness properties

In the style of the Semantic Soundness Theorem of [55, §3.7], we can now finally
prove that “well-dimensioned programs do not go wrong’

Theorem 4.11 (Dimension Semantic Soundness) No consistently-dimensioned
expression fails because of dimension: more formally, for all e, and T, if #(ep) T T
then for each x such that ((en, @) 1 I') —E x we cannot have that x —g 4.

PROOF By contradiction, let us assume that a reachable consistently-dimensioned
expression e, fails because of dimension: then we have that #(e;) T T and
((en, @) 1 I') —E x —E ¥g; but because of Lemma 4.9 each reduction start-
ing from the initial configuration either leaves the dimension unchanged or lowers
it, hence #(x) = #((en, @))) = T, which means that r(y) is also consistently-
dimensioned.

We examine all the possible cases where x —g ¥u.:

e ([let xy...zp, be O in ep,|p,, p).S V I' —g ¥4 when the top bundle on V
has less than n elements, let us say ¢}...cj, with k& < n: then by Definition 4.6
applied twice and Lemma 4.7 for some context C[_] we have that r(x) =
Cl[let ...z, be ¢}...cj, in ep,]n,]; but then by Definition 4.1 the let ex-
pression cannot be consistently-dimensioned, and neither can r(x) by Propo-
sition 4.3: contradiction;

e ([call f OJpy, p).S V I' —E 34 when the top frame on the value stack
has a wrong number of (-separated constants: then by Definition 4.6 and
Definition 4.1 we have that r(x) = T: contradiction;

o ([primitive m O]y, p).S V I' —g ¥x when 7 :p n — m, V # clcp—1...
eale itV
identical to the [call f O]y, case;

o ([if O € {ci...cp} then ey, else epglpy, p).S V I —g %y when V £ V"
by Definition 4.6 and Definition 4.1 we find immediately that r(x) = T: con-
tradiction;

e ([bundle O]y, p).S V I' —g %4 when V = el e 10,V
similar to the [call f O]y, case: since x is reachable the original bundle ex-
pression contained exactly n parameters, but some of them are plural: however
by Definition 4.6 and Definition 4.1 we have r(x) = T: contradiction;

70 Chapter 4. A static semantics for ¢o: dimension analysis

e ([fork f Olp,, p).S V I' —>g %4 when the top frame on the value stack has
a wrong number of -separated constants: identical to the [call f O]y, case;

e ([join OJp,y, p).S VI —g %4 when V = V"

identical to the [if O € {¢;...c,} then ey, else ep,]p, case. [|

0

Corollary 4.12, a simple consequence of Theorem 4.11, extends the semantic
soundness result to whole programs by providing a sufficient condition for avoiding
dimension errors.

Corollary 4.12 Well-dimensioned-programs cannot fail because of dimension. o

Of course well-dimensioning is only a sufficient condition for the absence of di-
mension failures: an expression containing unreachable code such as [if N(1), €
{N(2)} then [bundle 3, 4p,]n, else 5y]n, may have dimension T, without ever
failing because of dimension.

4.3 Reminder: why we accept ill-dimensioned programs

Even when only speaking about static programs, we prefer not to restrict ourselves
to well-dimensioned programs for reasons of philosophical coherency (§1.4), despite
the difficulty of finding believable examples of ill-dimensioned programs that we
would like to accept as “correct”.

We could argue that it is at least conceivable that syntactic extensions automatically
produce static but ill-dimensioned g programs — which maybe could be proved not
to fail because of dimension, due to some property enjoyed by the extension. On
the other hand the extension might actually be unsafe in the general case, and still
useful.

But independently of any extension, at the level of the core language it is rea-
sonable to accept any program which could possibly yield a useful output: since we
want to respect the programmers’ intelligence g9 will not constrain the expressiv-
ity of the upper layers; therefore we want to accept ill-dimensioned programs and
run them until an error condition is reached, if ever. The compiler should generate
code which runs until possible, and compilation itself should not fail because of
ill-dimensioning.

Of course a personality implementer is always free to add static checks generating
warning messages or even fatal errors at compile time, yielding a very safe — if
restrictive — language. Such languages do have a place in the world, as shown
by the experience of Ada, ML and Haskell; anyway we still hold that refusing to
proceed at any cost in a hysterical paralysis is not the most useful reaction to the
discovery that a program might, or even will, fail.

4.4. Summary 71

4.4 Summary

We have shown a static semantics of €¢, permitting to statically infer the dimension
of the bundle each expression in a static program may evaluate to. We have then
proceeded to prove our static analysis to be sound with respect to eg’s dynamic
semantics, providing a sufficient condition which guarantees certain failures not to
happen at run time.

Such formal work is practical and not overly complicated, thanks to the mini-
malistic nature of gg.

Dimension analysis can be used for rejecting programs not respecting the sufficient
condition; anyway we advocate against such practice, in the interest of extensibility.

CHAPTER 5

Syntactic extension

The core language ¢(specified in §2 is useful but inconvenient for humans to write
directly. In this chapter we are going to specify syntactic abstraction mechanisms
allowing users to easily extend the language by adding high-level syntactic forms to
be automatically rewritten into &g.

Since the extension facility is defined in g itself and tightly intertwined with
the problem of expressing language syntax as a data structure, we also need to deal
with a bootstrapping problem in the process.

Contents
5.1 Preliminaries 00 o e e 73
5.2 S-eXpressions i it i i i e e e e e e e e e 74
53 Lispsyntax vttt 78
5.4 Syntactic extensions: the ¢; personality 83
55 Futurework oo e 124
5.6 SUMMATY . . ¢ ¢ v v v v v v v v v v e e e e e e e e e e e e e 124

Despite some fundamental differences, the syntactic layer of € is strongly inspired
by Lisp and indeed adopts many conventions taken from Scheme and Common
Lisp. We are now proceeding to quickly review Lisp dialects, in order to establish a
coherent foundation for our critique.

5.1 Preliminaries

Lisp is a family of dynamically-typed higher-order call-by-value imperative program-
ming languages, suitable to be used in a functional style and particularly convenient
for symbolic processing.

The original “LISP” language described by John McCarthy back in 1959! [51]
has been extended and independently re-implemented many times throughout the
years giving birth to a wealth of dialects, the most important being the large and
complex Common Lisp [4] and the elegant, minimalistic Scheme [89, 41, 79]. All
dialects share the same core ideas.

Contrary to persistent misinformation, most modern Lisps are statically scoped
(“lexically scoped” in Lisp jargon); Scheme and Common Lisp in particular have

!McCarthy specified in a 1995 footnote that [51], published in April 1960, “was written in early
1959”: see footnote 4 at page 16 in http://www-formal.stanford.edu/jmc/recursive.pdf.

http://www-formal.stanford.edu/jmc/recursive.pdf

74 Chapter 5. Syntactic extension

been using static scoping since their original inception in 1975 and 1984.

Lisp introduced several striking innovations most of which eventually found their
way into the mainstream, including the interactive Read-Eval-Print Loop, condi-
tional expressions, higher order and garbage collection. Recursion has been sup-
ported since the very beginning, and in the 1960s the possibility of expressing a
program as a collection of recursive procedures might have felt like the most radical
feature. But what still sets apart Lisps from the other languages after fifty years
is their homoiconicity: programs are encoded using the same data structure they
manipulate, which is in fact the only existing “data type” in the language; such data
structure, the s-expression, is simple and convenient for meta-programming and for
representing symbolic information in general.

Just to be explicit from the beginning and to prevent misunderstandings, we al-
ready make it clear that €’s syntax will use s-expressions but will not be homoiconic:
€ is not a Lisp. Yet we find it best to illustrate our solution in an incremental way;,
starting from a description and critique of Lisp and then re-tracking the mind path
by which we arrived at our design.

In the following we give our definition of s-expressions and then proceed to quickly
review the main ideas of Lisp, without exactly following any particular dialect. Our
lexical and syntactic conventions will mostly come from Scheme, but our macro
system will be closer to Common Lisp’s.

Our meta-linguistic conventions by contrast will be non-standard, particularly
with regard to s-expressions, in order to establish a new common framework en-
compassing ¢ as well. Experienced Lisp users interested in a comparison with the
traditional jargon are referred to the footnotes for some discussion of the rationale
for our changes.

5.2 S-expressions

The s-expression is an inductive data structure: it can be seen a disjoint union
containing at least several fixed atomic types and an s-cons type (pronounced “ess-
cons”); an s-cons is an ordered pair of s-expressions?.

The specific collection of atoms depends on the Lisp dialect, but at least some
types are always provided: a unique object called the empty list, fixnums, and
symbols. Symbols are objects identified by a unique name, which can be compared
for equality with one another. All dialects also allow procedures (zero or more s-
expressions as parameters, one s-expression as result, possibly with side effects) as
s-expressions.

All practical Lisp dialects also support other atom types, including booleans and
other numeric types; other non-atomic types such as vectors are available as well,

despite not being required for our presentation.

28-conses are called “conses” in Common Lisp and “pairs” in Scheme.

5.2. S-expressions 75

It is worth to stress the disjoint-union nature of s-expressions; however in this
slightly non-standard presentation we prefer to explicitly specify an encoding for
an s-expression as a pair made of a natural type identifier and an element of the
corresponding type.

The following “open-ended” definition is slightly involved due to the nature of
s-expressions as a disjoint union whose cases, despite not being all specified, are
potentially recursive?:

Definition 5.1 (s-expression) Let Ay,...,A,—1 be an ordered collection of sets
called addend types including at least the set of fixnums, the set of symbols, the
empty list singleton, the set of conses, and some set of s-expressions-to-s-expression
procedures.
We define the set of s-expressions Sp,,... A,_; (or simply S without subscripts when
the addends are clear from the context) as ({0} xAg)u ({1} xA1)u...u({n—1} xA,_1).
For each addend type A; we also define:

e the injected type s-A; (pronounced like A; preceded by the syllable “ess”) as
{Z} X Ai;

e the A;-injection function ina, : A; = S as {x — (i,z) | v € Ai};
e the A;-ejection partial function ejp, : S — A; as {(i,z) — z | z € A;}.
And the untyped ejection function ej : S — |J; Ai as {(i,x) — = | (i,z) € S}. o

As per Definition 5.1 we call s-fixnums, s-symbols and the empty s-list singleton
the injections of fixnums, symbols, and the empty list singleton into s-expressions.
We call s-conses the injection of conses — which, it is worth to stress once more,
means the set of s-expression pairs, rather than any pairs. The specific nature of
S-procedures depends on the Lisp dialect, but in general we can think of them as
the injection of procedures with effects accepting zero or more s-expressions and

returning one s-expression?.

Up to this point we have defined s-expressions as a mathematical structure; but
since s-expressions are used for input and output, we also need to specify their writ-
ten notation as a reasonably formal syntax. However, to avoid making our notation
too heavy, we will not explicitly distinguish between s-expression literals and their
corresponding non-injected literals.

3The s-cons is not necessarily the only recursive case. We have already hinted at the “vectors”
(s-vectors for us) supported by all practical Lisps, whose elements are other arbitrary s-expressions;
but the idea of course is to enable the user to provide more recursive addends herself.

4In our presentation we use the “s-” prefix for explicitly highlighting the difference between a
type and its injection into s-expressions, but such distinction is not needed in Lisp where every
object is an s-expression: s-fixnums, s-symbols and the empty s-list in Lisp are just “fixnums”,
“symbols” and “the empty list”. Here we speak of an s-cons as an (injected) pair of two s-expressions
rather than two arbitrary objects; since here we do not have much use for non-injected conses we
can also avoid the issue of conses of non-s-expressions.

76 Chapter 5. Syntactic extension

Definition 5.2 (s-expression syntax) Comments start with a semicolon and ex-
tend up to the end of the line; all whitespace is otherwise ignored.

o We write s-fixnums as strings of one or more digits in radixz 10, preceded by
an optional sign;

e we write the empty s-list as “() ", possibly with whitespace or comments between
the open and closed parentheses;

e we accept as an s-symbol any sequence of characters not containing spaces,
dots, semicolons, quotes, backquotes, commas or parentheses which is not
well-formed as an s-fitnum or an s-expression prefix as per Syntactic Con-
vention 5.6°;

e if s1 and so are s-expressions, then we write their s-cons as “(s1 . 83)”. o

It should be noticed that s-procedures have no syntax in Definition 5.2: this means
that they cannot be directly expressed as literal constants.

Some sample s-fixnums are 1234, 0, +12, and -42; () is the empty s-list; all of
the following are s-symbols: a, b, +, this-is-an-s-symbol, incr!, even?, pi/4, 1-.
Some s-conses are (1 . 2),(a . ()),((a . 3) . 1), ((a . b) . (67 .).

Since s-conses allow s-expressions to be nested at any depth, it is convenient to
unambiguously name specific substructures:

Definition 5.3 (s-cons selectors) Let s1 and sg be s-expressions; we say that the
s-car of (s1 . 83) is s1 and the s-cdr of (s1 . S3) is s3.

By definition, let s-car and s-cdr be s-cons selectors; now, if s-cPr is an s-cons
selector for some “path” P € {a,d}", we define the s-cons selector s-caPr of s to be
the s-car of the s-cPr of s, and the s-cons selector s-cdPr of s to be the s-cdr of the
s-cPr of s°. When pronounced, each “a” and “d” in s-cons selector names belongs
to a different syllable. o

So for example, the s-caddr (pronounced “ess-ca-dh-dr”) of an s-expression is the left
element of the right element of its right element, and the s-caddr of (a . (b . (c
(d . e))))isc.

Apart for their “s-” prefix, introduced by us to distinguish s-expressions from
addends, s-cons selector names are well-established in Lisp. They trace back their
alien-sounding names to details of the IBM 704, the machine on which McCarthy’s
LISP was originally implemented [51]; we retain the names for their easy compos-
ability, and as a homage to Lisp culture.

Since s-conses may be nested arbitrarily, they can encode linear sequences of any
length. Such sequences are conventionally nested on the right:

5This description is simplified and idealized compared to what realistic Lisps allow: practical
dialects provide escaping mechanisms to even embed whitespace within a symbol name.
6 Again, we prepended the “s-” prefix to the traditional cons selector names.

5.2. S-expressions 77

Definition 5.4 (s-list) We call an s-expression an s-list” (pronounced “ess-list”) if
it 1s either the empty s-list or an s-cons whose s-cdr is an s-list.

If an s-list s is empty then we say it has no elements; otherwise we call its
elements the s-car of s followed by the elements of the s-cdr of s. =

The following three s-expressions are s-lists: (), (a . O), (a . ((1 . 2) . O));
the following three s-expressions are not s-lists: foo, (a . b), (a . (b . c)).

It may be worth stressing that an s-list is allowed to have other s-conses as some
or all of its elements, which are not restricted by homogeneity or indeed any con-
straint on their shape.

S-cons syntax becomes clumsy to use when s-expressions are nested too deeply,
hence the need for the following syntactic convention:

Syntactic Convention 5.5 (compact s-expression notation) An s-cons whose
s-cdr is either another s-cons or the empty s-list may optionally be written by both:

e omitting the dot;

e omitting the parentheses around the s-cdr. o

For example the last two sample s-lists above may also be written as (a) and (a (1

. 2)); (a b . c¢) is another way of writing the last sample non-s-list above.
Syntactic Convention 5.5 always applies to the “spine” of s-lists, making them

more convenient to write than alternative specular structures nested on the left.

It is easy to convince oneself that, even with Syntactic Convention 5.5, s-expression
notation remains unambiguous; in particular we do not need any precedence or as-
sociativity rule to parse an s-expression in written form, nor grouping brackets —
Far from it, parentheses are a fundamental part of the syntax, and can never be
added or removed without changing the denoted data structure.
The following shorthand syntax for s-expressions will be useful later:
Syntactic Convention 5.6 (Lisp s-expression prefixes) For any s-expression s:
e (quote s) may optionally be written as ’s;
e (quasiquote s) may optionally be written as ¢s;
e (unquote s) may optionally be written as ,s;

e (unquote-splicing s) may optionally be written as ,@s.

We say that “*7, “¢7 “,7 and “,@” are s-expression prefixes. o

"What we call s-list here is traditionally known as “list” or “proper list” in Lisp. What we would
refer to here as a non-s-list s-cons is known in Lisp as a “dotted list” (since Syntactic Convention 5.5
does not apply to the structure spine); somewhat confusingly, Lisp “dotted lists” are not “lists”.

78 Chapter 5. Syntactic extension

s-expression 1=
atom { atom }
| C s-expression rest { s-cons(s-expression, rest) }
| prefix s-expression { s-cons(lookup(prefiz), s-cons(s-expression, ())) }

rest ;=
) {0}
| . s-expression) { s-expression }
| s-expression rest { s-cons(s-expression, rest) }

Figure 5.1: S-expressions can be parsed with the attributed LL(1) grammar [3,
§84-5| above, also supporting Syntactic Conventions 5.5 and 5.6. The grammar is
simple enough to allow for a hand-coded recursive-descent parser, with no need for
generators.

Replacing the second alternative for s-expression with “| (rest { rest }” yields an
even simpler grammar which recognizes (. s) as an alternate degenerate form of
any s-expression s, as in fact several Lisp implementations do.

5.3 Lisp syntax

Up to this point we have described the syntax of the s-expression language, without
providing any corresponding semantics other than the disjoint-union data structure;
even Syntactic Convention 5.6 simply describes a more compact way of writing
down some inductive data structures, with no meaning deeper than their shape.
But of course the entire point of studying s-expressions is encoding programming
language syntax into them; the “s-” prefix indeed stands for “symbolic” in [51], and
s-expressions make up the syntax of (a superset of) Lisp forms.

5.3.1 Lisp informal syntax

Here we resist the temptation of formally specifying a mapping from s-expressions
to terms of a call-by-value A-calculus with conditionals and literals; such a defi-
nition would depend on the Lisp dialect details and would be either idealized or
overcomplicated, without adding much to comprehension in any case.

The following high-level description and the examples below will suffice to pro-
vide an intuitive idea:

Syntactic Convention 5.7 (Lisp informal syntax) Let s1, s2 and s3 be
S-expressions.

e An s-symbol represents a variable with the same name as its ejection;

e an s-fixnum or empty s-list is self-evaluating, which is to say represents itself
as a literal constant®;

8In Scheme the “empty list” () is not considered a valid expression nor interpreted as a literal
constant, which forces the user to needlessly quote literal () objects. We consider this an unfortu-

5.3. Lisp syntax 79

e an s-cons whose s-car is an s-symbol in a specific set and whose s-cdr has the

right shape represents the corresponding syntactic form:

(if s1 so s3) represents a conditional, of which s1 represents the con-
dition, so the “then” branch and s3 the “else” branch;

(lambda s1 . s2) represents an anonymous procedure with the parame-
ter names encoded by s1; so represents the sequence of forms in the body;
if s1 is an s-list of s-symbols, then the parameters have the same names

of its element ejections’;

(quote s1) represents s1 as a literal constant;

(quasiquote s1) represents s1 as a quasiquoted “mostly-literal” struc-
ture: the result is a literal structure equal to s1 except for substructures
of the form (unquote s) or (unquote-splicing), which represent or-
dinary non-literal expressions:

* for an (unquote s) substructure, the result of evaluating s will re-
place the substructure in the quasiquoted structure;

* for an (unquote-splicing s) substructure the result of evaluating
s, which must yield an s-list, will be spliced element by element within
the containing s-list in the quasiquoted structure;

(define s1 s9) when s1 is an s-symbol represents a global definition; so
represents the expression to be evaluated and whose result will be named;

an s-cons whose s-car is an s-symbol whose ejection is a macro name
represents a user-defined syntactic form;

e an s-list whose s-car is not a syntactic form name represents a procedure ap-
plication: the s-car of the cons represents its operator, and the s-cdr contains

an s-list with its zero or more operands. o

So, for example:

57 represents the literal constant 57 (an s-fixnum);

a represents the variable named a;

’a represents the literal constant a (an s-symbol);

(a) represents the application of a procedure named “a”, with zero arguments;

((a 43)) represents the application of a procedure named “a” with one argu-
ment, the literal constant 43; the result, presumably another procedure, is in

its turn applied with zero arguments;

nate design mistake (within an otherwise quite beautiful construction), from which to intentionally
deviate.

°Tt is not worth the trouble to introduce variadic procedures here, but this wording permits us
at least not to arbitrarily exclude them.

80 Chapter 5. Syntactic extension

(if (a b) ¢ d) represents a two-way conditional expression; if the result of
the application of the procedure named “a” to the value of the variable named
“b” is true, then the result is the value of the variable “c”; otherwise the result
is the value of the variable “d”;

e (+ 1 2) represents the application of a procedure named “+” to two argu-
ments, the literal s-fixnums 1 and 2; no special syntax is needed or available
for arithmetic operators, which are considered ordinary procedures: as a con-
sequence of Syntactic Convention 5.7 procedure application syntax is rigidly
prefix;

e ’(+ 1 2) represents the literal constant (+ 1 2), which is an s-cons and in
particular an s-list, and also happens to be a valid Lisp expression itself;

e ’(if) represents the literal constant (if), an ordinary data structure which
would not be valid as a Lisp expression;

e ‘(if) also represents the literal constant (if);

e ‘(a ,b c) represents an s-list of three elements: the s-symbol a, the value of
the variable b, and the s-symbol c;

e ‘(a ,@b c) represents an s-list of two or more elements: the literal s-symbol
a, all the elements of the s-list which is the value of the variable b (assumed
to be an s-list), and finally the literal s-symbol c;

e What follows is a reasonable definition of a recursive procedure:

Lisp

(define factorial
(lambda (n)
(if (= n 0)
1
(* n (factorial (- n 1))))))

ook W N

The anonymous procedure is evaluated and then globally named “factorial”
the procedure has one parameter called “n”, and its body is a simple condi-

w_”»

tional: if the result of calling the procedure with the parameters n and zero
is true, then the result is one; otherwise the result is the result of calling “*”
with two parameters: n, and the result of calling factorial with the result

of calling

“won

with n and one.

Of course a small set of predefined procedures must be provided if we want to
perform arbitrary computation on s-expression data: in particular we will need to
check whether a given s-expression belongs to an addend type (for example, the
symbol? procedure returns a true s-expression iff its parameter is an s-symbol),
plus constructors and selectors (for example, cons returns a new s-cons containing
its two parameters; car returns the s-car of its parameter, which must be an s-cons);
we also need a procedure eq? to check whether two given s-symbols are equal.

s oW N R

5.3. Lisp syntax 81

Given such predefined procedures, it becomes conceptually easy to work on sym-
bolic information, including language transformers and interpreters. [51| contained
the first Lisp interpreter written in itself as an ordinary procedure, in the space of a
couple pages of code.

All realistic Lisps also include some macro facility, usually Turing-complete: macros
allow the user to define an s-expression-to-s-expression mapping for rewriting a syn-
tactic form into a combination of already available forms; a macro may be thought
of as a Lisp procedure to be automatically applied to all instances of a user-defined
form, in some phase prior to execution.

As a simple but not unrealistic example, since global procedure definitions and
tests for zero are presumably very common, a user might prefer to be able to write
the factorial definition above in a more compact way, as:

Lisp

(define-procedure (factorial n)
(if-zero n
1
(* n (factorial (- n 1)))))

User-defined forms still follow Lisp syntactic conventions!©:

forms define-procedure and if-zero is encoded as an s-cons whose s-car is the

each use of the new
s-symbol uniquely identifying them.

Macros are a form of syntactic abstraction (§1.3.1) allowing to factorize recurring
code patterns; it should be obvious that procedural abstraction alone as provided
by lambda and define does not suffice to express define-procedure and if-zero,
since their s-expression subcomponents are not necessarily valid to be interpreted as
expressions, and in any case they do not follow the call-by-value evaluation strategy
of procedures.

As builders of syntax from other pieces of syntax, Lisp macros are a prime example
of symbolic computation, and a particularly good use case for quasiquoting.

For example, assuming the three parameters of the macro if-zero above to
be bound to the formals discriminand, then-branch and else-branch, the macro
body might be as simple as ¢(if (= ,discriminand 0) ,then-branch
,else-branch).

5.3.2 Critique

The peculiar syntax of Lisp has always been a polarizing issue for users, either loved
or despised with a violent fervor. Without trying to pass our personal opinions on
the matter as science, we simply emphasize how powerful macro systems of the kind
hinted at above are made possible by s-expressions and homoiconicity.

00f course because of their different role Common Lisp “reader macros” [4, §2.2], a form of
extension for the s-expression parser, do not fit our classification; Common Lisp “macros” do.

82 Chapter 5. Syntactic extension

Syntax aside, some circles also perceive as a problem the apparent lack of ef-
ficiency and the strongly dynamic nature of the language, including the glaring
absence of static checks.

As controversial topics do, Lisp has generated valid criticism and also plenty of
noise with popular slogans, myths and half-truths.

e Lisp has always been used for symbolic processing, its very name standing for
“List processing”; many users consider it inherently inefficient out of the field
of symbolic computation, because of its very high abstraction level.

Of course Lisp is far from limited to “lists” (s-lists for us); in fact s-lists are
but an s-expression subset, useful in practice but not any more “primitive”
than others. More importantly, all practical dialects have also included ad-
dend types such as random-access vectors and strings for decades; we avoided
them in our presentation of s-expressions simply because such addends are not
needed for encoding syntax, and in fact this lack of a homoiconic role might
actually contribute to make them less visible — yet, they exist.

Lisp can be compiled with reasonable efficiency, but some overhead due to its
strongly dynamic nature is indeed hard to overcome.

e In particular Lisp is dynamically-typed at its core: there is only one data type,
the s-expression. Apart from some runtime tagging and checking cost, the
main perceived problem is the difficulty of proving any useful static properties
on realistic programs. It is not clear whether the language can be made safer
without seriously compromising its expressivity.

We consider this criticism to be valid.

e Popular claims according to which “Lisp programs are abstract syntax trees”
or “Lisp has no syntax” (intended as a positive, negative or neutral remark
according to the speaker) can be taken as poetic exaggerations at best.

Equating valid expressions to ASTs is an oversimplification: in fact most s-
expressions do not map into valid expressions, and the difference between
s-expressions and abstract syntax is relevant in practice. The slogan would be
slightly more believable if syntax were encoded as an ML-style sum-of-products
type, with its rigid constraints on arity and typing — but that would come
with a high cost in extensibility.

Lisp syntax looks uniform when compared to traditional solutions, but it is not
nearly as regular as it could be; for example the two atomic s-expressions 1 and
a are interpreted in radically different ways, the first as a literal s-fixnum and
the second as a variable. A literal s-symbol needs to be quoted as in ’a, while
a literal s-fixnum may be indifferently quoted (once) or not: the s-expressions
1 and ’1 are mapped into the exact same expression. Procedure application
syntax is also problematic: an s-expression such as (a b c) is regarded as a

5.4. Syntactic extensions: the ¢; personality 83

procedure call only “as a fallback case”, when the s-symbol a does not happen
to be the name of some syntactic form.

Could Lisp syntax be made more regular? Of course yes: as an alternative we
could require form names as explicit s-symbols in the first position of s-lists
also for variables and calls, and require quoting for all literals. Then instead
of (*x n (f (- n 1))) we would have something like “(call (variable *)
(variable n) (call (variable f) (call (variable -) (variable n)
?1)))7”, more uniform but hardly more convenient. Notation would remain
clumsy even after introducing new s-expression prefix syntax for “variable”
and “call” in the style of Syntactic Convention 5.6: for example, the very
cluttered s-expression “@($* $n @($f @($- $n ’1)))” is a representation of
the expression above, assuming an s-expression syntaxr amendment disallowing
“$” characters in symbol names — without the syntax change we would need
more whitespace, as in “@($ * $ n @($ £ @($ - $ n °1)))".

Lisp syntax is a compromise and a consequence of conscious design decisions
rather than historical accidents, and these issues have been known for decades:
[87, “{FUNCALL is a pain}”, pp. 26-27| already deals with the problem of using
“lists” both for procedure calls and for other forms.

We have to recognize that Lisp notation in practice is useful and justified as
it stands, despite its relative asymmetry.

5.4 Syntactic extensions: the ¢; personality

In the following we are going to build upon the experience of Lisp and address all
three points in §5.3.2, so that:

e ¢ be efficiently implementable, and not especially tied to symbolic processing;

e personalities remain open to any typing policy: strong, weak, static, dynamic,
hybrid, or none at all;

e ¢ syntax be at least as convenient as Lisp’s while remaining simple to describe
and extend.

For extensibility’s stake, we use s-expressions to encode language syntax, as Lisp
dialects do; but differently from Lisp we choose to decouple syntax and generic
data structures, so that s-expressions are available as objects to compute just as
one data type among a wealth of others: in practice data of each addend type
are available either injected into s-expressions (for example s-fixnums, s-symbols),
or untagged (fixnums, symbols): thus s-expressions become a way of selectively
employing dynamic typing in a world where untyped objects are also available, with
injection and ejection operators to provide a link between the two representations.
S-expressions are always used to represent syntax before macroexpansion, but a user
is free to employ them at run time as well if she chooses to, where dynamic typing

84 Chapter 5. Syntactic extension

feels more convenient. For generality’s sake, we want s-expressions to be extensible
so that the user may provide more addends.

Expressions are just one addend type, distinct from s-expressions; €y expres-
sions may be built and analyzed with constructor and selector operators, injected
to and ejected from s-expressions. Said even more explicitly, in our solution we have
that s-expressions are distinct from injected expressions; and macros act like proce-
dures turning s-expressions into untagged expressions. Moving farther from Lisp we
will also define transforms (§5.4.1.5), as a way of systematically turning (possibly
extended) untagged expressions into other untagged expressions.

The personality stack

The language roughly outlined above constitutes a personality we call €;:

e The e personality corresponds to €y augmented with forms to define globals,
procedures, macros and transforms; plus some utility library.

e Thanks to macros and transforms €7 is suitable to further extend into higher-
level personalities.

e We call ¢ the whole system, including g, €1 and other (at this point still
hypothetical) higher-level personalities built on top of €.

Higher-level personalities will contain macro and transform definitions in the style
of the ones of §5.4.4, later in this chapter.

As a language, €1 has an abstraction level between g and Lisp, closer to the for-
mer. Not necessarily aimed at the final user, e; has a low-level feel and is by design
unsafe and unforgiving: operators can be applied to the wrong operands with no
type checking at all, and pointers are explicit. It lends itself to efficient execution,
and is portable if used correctly. €1 is compatible with garbage collection but does
not require it: the residual program resulting when all syntactic abstractions are
transformed away might very well use manual memory management only.

The implementation language of €1 is g, taking advantage of Scheme for boot-
strapping only. The implementation forces us to commit some decisions which we
had left open in the description of gp in §2, such as the actual definition of names
and handles in terms of data structures. All of this has a bearing on €1, and in our
solution the implementations of €y and g1 are intimately bound: an implementation
of g¢ alone directly parsing the syntax of Definition 2.1, despite being certainly pos-
sible, in practice would be little more than an idle exercise without the syntactic
extension mechanisms of ¢1.

5.4.1 Definition via bootstrapping

One central idea of ¢ is to keep the core language as simple as possible, and have
more complex linguistic features defined as code. As a consequence of this strategy,

5.4. Syntactic extensions: the ¢; personality 85

a formal specification of €9 automatically constitutes a formal'l specification of &
as well, if we keep into account the source code to bootstrap it from gy3. Our im-
plementation thus also serves as a specification of €1: code, rather than much less
flexible mathematics.

The bootstrapping process is nontrivial, and relying as it does on alternative im-
plementations of the same data types, macros, side effects on a global state and
unezec it provides a particularly poor fit for the graphical notation of T diagrams
[52], [39, §3]; here we will resort to plain English to describe the bootstrap phases,
and present the source code following by necessity a bottom-up style.

The general plan, developed in greater detail throughout the rest of this section,
consists of four phases:

(i) extend Scheme by adding untyped data (§5.4.1.1);

(77) implement ey with s-expression syntax plus definition forms using Scheme
macros (§5.4.1.2);

(#i) in this temporary £y implementation, build the core data structures we need
upon untyped data, an gq self-interpreter relying on reflective global structures,
macros and transforms (§5.4.1.3);

(iv) fill reflective global structures by re-interpreting the core definitions above, so
that the interpreter becomes usable (§5.4.1.7);

As it should be clear now, developing &1 from ¢ up to the point where we can
define s-expressions, macroexpansion and transforms requires a certain amount of
code (about 2000 lines) in which we have to use g to build some machinery, much
of which is useful as part of a generic utility library as well and hence deserves to
be considered as “belonging” to £1. Part of the “library” in &1 exists because of this
necessity, while most of the rest relies on syntactic abstraction and is defined after
the fourth phase, the aim being simply to make €1 more convenient to use (§5.4.4).

The fourth phase, after which the global state can be queried, also makes it
possible to unerec away from Guile into a different runtime (§3.3.2.1).

In the following we are going to show code snippets from the implementation, which
is available in a public bzr repository on GNU Savannah: https://savannah.gnu.
org/bzr/?group=epsilon (2015 note: the repository switched to git in late 2013:
see §5.4.5]. We will usually omit or condense comments and may change indentation
for reasons of space, but we will not simplify the code for this presentation.

This discussion deals with the state of the implementation as of Summer 2012.

5.4.1.1 Phase (i): extend Scheme with untyped data

In order to eventually free ourselves from the dependency on Scheme, we need to
define our own data structures which are not based on the predefined version of s-

1 Of course up to the details we did not describe, such as primitives.

https://savannah.gnu.org/bzr/?group=epsilon
https://savannah.gnu.org/bzr/?group=epsilon

86 Chapter 5. Syntactic extension

expressions. To simplify debugging and avoid reusing Scheme features by mistake, it
is also useful to make our data structure incompatible with predefined s-expressions
addends; and since we want to unexec in the end, our “untyped” data structure will
actually need bozedness tags (§3.3.2.1).

We use Guile |21] as our Scheme implementation for bootstrapping. One of
the intended applications of Guile is as an embeddable Scheme system to make C
applications extensible in the style of Emacs [81], and in view of this use case Guile’s
C interface was made particularly convenient and flexible; we used it to define in C
our new “type” that we call whatever, and operations over it. Boxedness tags serve
only for the internal Guile garbage-collection machinery, at unexec time, and for
debugging memory dumps (§3.3.1); but data structures built with whatevers should
be thought of as untyped most of the time, as in fact they are conceived for being
eventually unexeced into untyped objects, dropping any tagging information.

Whatever operations help to prevent possible mistakes during the bootstrap
process by actually performing dynamic checks on tags, in particular to prevent
non-whatever objects from being written into whatever buffer slots: whatever data
structures must remain closed over the “points-to” relation, so that no dependency
on Guile s-expressions can remain at unexec time, and instead whatevers only refer
other whatevers.

Since Guile is a Scheme implementation its only data type is the s-expression, of
which whatevers are seen as just one more addend type: in our extended Guile it is
possible to dynamically check whether an s-expression is a whatever injection.

The implementation of this phase, mostly in bootstrap/whatever-guile/whatever-
guile.c, is dirty and not especially interesting in itself. We defined the whatever
“type” in C as a Smob |21, §Defining New Types (Smobs)]. Whatevers have the
printed syntax of Syntactic Convention 3.4, also using ANSI terminal color escape
sequences to help the user to recognize boxedness at a glance.

The same C source file also defines operations over whatevers, making them ac-
cessible to Scheme: there are trivial conversion operators (for example from Scheme
(injected) fixnum or (injected) threads to whatever and vice-versa), plus what &
sees as primitives:

e arithmetic and bitwise-logic operators;

memory allocation, disposing, lookup and update;

very simple input/output;

e unezecing primitives, for checking the boxedness tags and buffer sizes;

the single primitive state:update-globals-and-procedures!, needed for trans-
forms (§5.4.1.5).

Primitives number around 30.

5.4. Syntactic extensions: the ¢; personality 87

The result of this phase is guile+whatever, an extended Guile which can also
be used interactively, supporting our whatever objects while remaining completely
compatible with Scheme. We will not show examples of its use, because some
counter-intuitive choices were dictated by efficiency concerns; the details of the
guile+whatever system become irrelevant anyway after phase (ii).

5.4.1.2 Phase (ii): implement ¢; in extended Scheme

Our implementation uses a variant of €y in which the grammar of Definition 2.1 is
augmented by one more production, for an indirect call form:

e = [call-indirect e e*],

We avoid a formal specification of semantics for call-indirect: the idea is simply
calling a procedure whose name is computed at run time as the result of an expres-
sion; parameters are evaluated call-by-value left-to-right as always in g, first the
operator and then the operands.

It is easy to convince oneself that adding call-indirect is a quite harmless
optimization, as its effect can be easily simulated by automatically generating an
“apply function” dispatching over one of its parameters, as in Reynolds’ defunc-
tionalization [72|. In fact we do that as well, as a proof of concept in bootstrap/
scheme/core.e (§5.4.1.3).

Before we can use gg for implementing €1, we need of course a syntax for p. In
typical bootstrapping fashion, we would like to define it using the language itself,
go (or maybe €1, for maintainability’s stake) — but no parser is available. Our
solution is mapping an s-expression encoding of €9 syntax into Scheme, by using
Guile macros!?.

Later we will provide another cleaner frontend implementation!? in e;, to break
the bootstrap dependency from Guile; that second frontend will be backward-
compatible with this bootstrap implementation of .

As a consequence of this decision, it is natural for our implementation to use
symbols for names, encompassing all the sets of variable, procedure and primitive

names X, F,

The following definition, very simple despite its length, follows the spirit of Syn-
tactic Convention 5.7 but is more rigorous due to its importance: reading g syntax
as encoded into s-expressions is key to understand most of the details in the boot-
strap process.

Since macros are not supported in this phase but the process is akin to macroex-
pansion, we name this rewriting of an s-expression into an expression non-macro

12We used Guile’s non-standard Common Lisp-style macros instead of the standard R5RS hy-
gienic macros [41] which Guile also provides. This choice has no particularly deep reason except
esthetic consistency with €1’s macro system; an implementation based on hygienic macros would
have worked just as well.

13This is not implemented yet: see §5.4.5.

88 Chapter 5. Syntactic extension

expansion. The choice of generated fresh handles is immaterial in practice, so we

speak of non-macro expansion as of a function.

Definition 5.8 (non-macro expansion) Let s, s1, S2, 83, S4 be s-expressions. Then

we define, up to the choice of a fresh h' € H, the non-macro expansion function

Ee():S—E as:

Fe((e0:variable s)) = zj where = €jsympol(S);
Eg((e0:value s)) = ¢y where ¢ = ej(s);

Ee((e0:1let s1 s2 s3)) = [let xi..x, be ep, in ep,|p where (xy..xy) =
Exs(s1), en, = Ee(s2) and en, = Eg(s3);

FEe((e0:call s1.s2)) = [call f ep,...en, | where f = €jsympbor(s1) and
<eh1...ehn> = EES(]SQI),‘

Fe((e0:call-indirect i . s2)) = [call-indirect ey, €p,...€p, |n where
en, = Ee(s1) and (ep,...en,) = Egs(s2));

FEe((e0:primitive sq . s2)) = [primitive 7 ey, ...ep, |y where ™ = €jsympor(51)
and {ep, ...ep,) = Egs(s2);

Ee((e0:if-in s1 sy s3 s4)) = [if ep, € {c1...c,,} then ey, else ep,]| where
ehl = EE(]SlD, <cl...cn> = ECSGSQD, 6h2 = EEGSSD and ehs = EE(]S4D,'

Ee((e0:fork si . s2)) = [fork f ep,...en,|n where f = €jsympbor(s1) and
<€h1-'-€hn> = EES(]SQD;

Fe((e0:join s)) = [join ep, |p where ep, = Ee(s);

we do not explicitly specify Eg((el:define . s)|);

Eg((e0:bundle . s)|) = [bundle ep,...ep, | where {ep,...en,) = Egs(s);
Ee(s) = Eg((e0:variable)| where s is an s-symbol;

Ee((s1 . s2)) = Eg((e0:call s; . s2)) where sy is an s-symbol not in {e0:variable,
e0:value,e0:1let,e0:call,e0:call-indirect,e0:primitive,e0:if-in,
e0:fork,e0: join,e0:bundle,el:define};

where the non-macro sequence expander Fgs() : S — E* is:

Egs(O) =

Egs((s1 . s2)) = en,.Egs(sa) where ep, = Eg(s1);

the symbol sequence expander Exs() : S — X* is:

Exs(O) = O;

Exs((s1 . s2)) = x.Exs(s2) where x = ejsympoi(51);

5.4. Syntactic extensions: the ¢; personality 89

and the value sequence expander Ecs() : S — C* is:

e Ecs(O) = s

o Ecs((s1 . s2)) = c.Ecs(sa) where ¢ = ej(sy). o

The file bootstrap/scheme/epsilon0O-in-scheme.scm implements non-macro ex-
pansion with Scheme macros. After loading it from guile+whatever, Scheme and
gp can be used together:

e (+ 1 2) yields 3 as a Guile s-expression.

o (e0:primitive fixnum:+ (eO:value 1) (e0:value 2)) yields the injected
whatever 3, written in green as “3” (§3.3.1).

It is worth remarking how Definition 5.8 does not define any self-evaluating atom,
since doing so would create ambiguity with Scheme’s predefined self-evaluating
atoms: using e0:value in cases such as the example above is hence necessary, at
this stage: for example (e0:value 2) generates 2 as an injected whatever literal
constant, which is different from Guile’s 2.

By contrast it is not necessary to use e0:variable and e0:call for implement-
ing variables and procedure calls, as a consequence of the fact that Scheme and gq
share the same namespace for identifiers — at least at this stage.

At this point €9 would be usable as an implementation language, if it provided
some way of defining procedures and updating the global environment. A correct
implementation of such facilities relies on reflective data structures and therefore
belongs in Phase (iii) or even later; but once more we can use Guile to solve the
bootstrap problem and provide a temporary implementation of an el:define form.

As for Scheme’s define!'4

procedure or a procedure, according to the shape of its s-cadr — respectively an

, we use the same form for defining either a non-

s-symbol, or an s-list of one or more s-symbols.

For a non-procedure definition, the second parameter is non-macro expanded,
evaluated and the result bound to the symbol-ejection of the first parameter; for
a procedure definition, the second parameter is non-macro expanded and bound as
the body of a procedure whose name is the symbol-ejection of the s-car of the first
parameter; the s-cdr of the first parameter contains an s-list of s-symbols whose
ejections make up the procedure formals.

1 An important difference with respect to Scheme is how our definition facility always works on
state environments (§2.4.1), therefore at the top level, and can be invoked anywhere an expression
can occur in the code, at any nesting level. By contrast Scheme’s definition facility updates the
“current” environment, which happens to be the global one only if the form is used at the top
level. Implementing €’s definition form over Guile required a relatively advanced and non-portable
hack relying on Guile’s module system. See the definition of define-object-from-anywhere in
bootstrap/scheme/epsilon0O-in-scheme.scm for the gory details.

90 Chapter 5. Syntactic extension

Again, el:define is important for understanding the bootstrapping code and de-
serves a more precise description. Without explicitly specifying a non-macro ex-
pansion of an el:define form into an £y expression, we describe the behavior we
require from such an expression:

Axiom 5.9 (definition forms) Let s; and so be s-expressions. Then, if e, =
Ee((el:define s1 s2))):

o if T = €Jsympol(51); €n, = Ee(s2) and ep, T' g {c) I' then we have that

en I' lE <> IV[glo'—>ba(I:L—environment]7'

o if (f,x1..xn) = Exs(s1) and en, = Eg(s2) then we have that

enT Jg O D[l onren)y !

The two cases are trivially exclusive, as s; cannot be an s-symbol and an s-list at
the same time.

The reason why we did not provide an explicit non-macro expansion for el:define
in Definition 5.8 should be obvious at this point; since the actual implementation
is in Scheme and its semantics is very clear, we have avoided writing a uselessly
complex expansion into &g assuming some global-updating primitive, even if that
would have been possible; in particular it would have been very painful to provide
an explicit encoding of €g expressions as ¢ data; the problem will be dealt with in
Phase (i) and in §5.4.4.3, where it becomes relevant for the implementation.

The actual Guile definition of el:define shows an interesting feature: after per-
forming the binding, el:define updates global (Scheme) data structures keeping
track of all the ¢y definitions which have been performed, including procedure bod-
ies. The need for this will become apparent in Phase (iv).

5.4.1.3 Phase (iii): build reflective data structures and interpreter in ¢

The purpose of this long phase is to define the global reflective data structures hold-
ing the program state and then the interpreter. We start from the associated library
functionality we need, using only €q in its s-expression encoding and el:define. The
task is complicated by the restrictions of the language, allowing for procedural but
not syntactic abstraction.

Equipped with Definition 5.8 and Axiom 5.9, the reader should be able to easily
follow our running commentary on the main sections of bootstrap/scheme/core.e.
Each section is delimited by a well-visible comment including a full line of semicolons.

The general low-level “feel” of €1 becomes apparent right from the first sections:
to create some order in the context of a global flat namespace, we adopt the conven-
tion of having all procedure and global names begin with a reasonable namespace
prefix delimited by a colon. Most of the procedures we define must work also after
unexecing, hence they must not rely on unexecing tags primitives: all the code in

o ot s W N

5.4. Syntactic extensions: the ¢; personality 91

bootstrap/scheme/core.e works on untyped objects ignoring any boxedness tags;
and of course the distinction between booleans, characters or small fixnums is purely
conventional; a whatever 0 object may represent the number zero, the false boolean
or even a null pointer, according to the context: the machine representation after
unexecing is exactly the same.

To make g9 more convenient to write, we usually define global procedures to wrap
primitives, with their same names; either of the definitions of the test-for-zero pro-
cedure whatever:zero? and the equality-by-identity procedure whatever:eq? in
the first section Utility procedures working on any data is a good example:

(el:define (whatever:zero? a)
(e0:primitive whatever:zero? a))

Such definitions only serve to simplify calling syntax, for example allowing the user
to write (whatever:zero? s) instead of (eO:primitive whatever:zero? s); in
terms of procedural “abstraction power”, they abstract very little.

We start defining operations over the simplest types: the empty list object is
simply the fixnum 0; booleans are represented as physical machines usually do,
using 0 for false (written #f) and any other value for true, including 1 which
we also write as #t; in other words, we use generalized booleans; the procedure
boolean:canonicalize canonicalizes a generalized boolean into either 0 or 1. As
a convention derived from Scheme, a question mark “?” at the end of a procedure
name serves to remind the user that the procedure is a predicate, which is to say a
procedure returning a boolean result.

The section dealing with Fiznums contains primitive wrappers for arithmetic and
bitwise operations, plus some very simple definitions such as minimum, maximum
and a parity test; the only slightly more sophisticated procedures are the fixnum
exponentiation (by squaring) procedure fixnum:**, and the base-10 logarithm. An
annoying repeating pattern with conditionals is already visible at this point: we
often have an e0:if-in form testing for a boolean condition, using {#f} as the con-
ditional case set to discriminate between false and any other value: what we think
of as the “else” branch is always the first one:

(el:define (fixnum:** base exponent)
(e0:if-in exponent (0)
(e0:value 1)
(e0:if-in (fixnum:odd? exponent) (#f)
(fixnum:square (fixnum:** base (fixnum:half exponent)))
(fixnum:* base (fixnum:** base (fixnum:1- exponent))))))

Unfortunately we cannot factor away this ugly pattern before introducing macros.

The Buffers section contains more trivial primitive wrappers for memory-related

[T N R N I

92 Chapter 5. Syntactic extension

primitives: a buffer may be created by buffer:make, destroyed by buffer:destroy,
read by buffer:get or updated by buffer:set!. Buffer size is only stored as part
of boxedness tags and must not be accessed out of unexec, which is the reason
why we did not provide a procedure wrapper to conveniently extract it, lest it be
used by mistake. buffer:get and buffer:set! have two and three parameters
respectively: we chose to use explicit offsets (0-based, in words) rather than pointer
arithmetics for accessing memory, in order to avoid making assumptions on memory
management systems, which often constrain the use of inner pointers. As in Scheme,

(1N R

an exclamation mark at the end of a procedure name serves to conventionally

remind the user that the procedure has side effects.

The Bozedness section contains some functionality to check whether a word is a
candidate pointer: for example fixnums below a fixed small constant, or fixnums
not divisible by the word size in bytes cannot represent pointers on any modern
byte-addressed machine (§3.3.2.1).

Having defined buffers, it is very easy to define Conses: conses are simply two-word
buffers with handy constructor, accessor and updater procedures. Differently from
s-conses, conses as defined in this section do not necessarily hold two s-expressions:
they are completely generic, mutable pairs of untyped objects:

(el:define (cons:make car cdr)
(e0:1let (result) (buffer:make-uninitialized (eO:value 2))
(e0:let () (buffer:set! result (eO:value 0) car)
(e0:1let () (buffer:set! result (eO:value 1) cdr)
result))))

The nested zero-binding e0:1et blocks simulating a statement sequence is another
unfortunate recurring pattern which we are forced to live with until we introduce
IMacros.

The Lists section introduces singly-linked lists made of right-nested conses, and
utility procedures to work with them. We “define” a list as either the empty list
list:nil, which is to say 0, or a cons whose right element is another list. The
quotes in the previous sentence are necessary: in keeping with 1’s nature the fact
that the right side of a list cons be another list is a pure convention, never enforced
with static or dynamic checks. Faithful to the motto “garbage in — garbage out”, we
simply let the system fail at run time when a non-pointer, non-cons or a cons whose
right side is not a list is used in place of a list — possibly with a reasonable error
message in the case of guile+whatever, but likely with a crude Segmentation Fault
after unexec (§3.3.2.1).

Of course we impose no constraint over the element shape, and lists are not
necessarily homogeneous. Our utility procedures over lists include the usual oper-
ations for appending, flattening, computing length, selecting by index. Thanks to
e0:call-indirect we could have supported higher-order procedures (without non-

s oW N e

5.4. Syntactic extensions: the ¢; personality 93

locals), but we refrained from doing so in this low-level core.

A useful way of employing lists is to make association lists or alists (pronounced
“ey-lists”), the only slightly delicate issue in our case being the way of comparing
keys: the first, simplest and most efficient way is “by identity”: the section Alists
with unbozed keys defines procedure using single-word comparison for keys; this is
always appropriate for unboxed or unique keys and when the key identity matters,
but is not reliable in general with boxed keys where the same content may be repli-
cated in more than one buffer.

A vector is a pointer to a buffer with the first element reserved to store the payload
element number, which is useful in many contexts where the size of a random-access
sequence is not fixed, and we cannot rely on boxedness tags. The section Vec-
tors provides procedures to lookup and update vectors, obtain their length, and
some other utility operations including append, blit, and conversion to and from
list. The procedure vector:equal-unboxed-elements? compares two vectors com-
paring their respective elements by identity, which is the most common case. No
bound-checking is performed, and elements are allowed to be heterogeneous. Vec-
tors as defined in this section cannot be resized, as re-allocating them would change
their pointer “identity”.

The next section deals with Characters and Strings: at this level characters are just
fixnums and strings are just vectors — which entails the somewhat space-inefficient
choice of having each character take one entire word in memory. Yet string support
becomes computationally simple, and the wide range of each character suffices for
supporting all Unicode code points, at a fixed width. Apart from some trivial 1/0,
string procedures are just trivial “aliases”, or actually wrappers, of vector procedures:

(el:define (string:equal? sl s2)
(vector:equal-unboxed-elements? sl s2))

Having defined string support, we are ready to deal with the second kind of asso-
ciation lists, in the SALists section: an salist (pronounced “ess-ey-list”) has strings,
or other vectors with elements compared by identity, as keys.

We then have a short section about Boxes: a box, similarly to an ML ref, encapsu-
lates the idea of a mutable memory cell, implemented as a pointer to a single-word
buffer. Utility procedures include support for incrementing a mutable counter, in
case a box contains a fixnum. For example (omitting the other obvious variant
box :bump-and-get!):

(el:define (box:get-and-bump! box)
(e0:let (old-value) (box:get box)
(e0:let () (box:set! box (fixnum:1+ old-value))
old-value)))

© 0 N O U W N

=
[=}

94 Chapter 5. Syntactic extension

Of course fixnum: 1+ is a successor procedure, and fixnum:1- is the predecessor®.

With alists and vectors at our disposal we are ready to implement Hashes hav-
ing either unboxed objects or strings as keys: we also use a box to introduce a level
of indirection making a hash easy to resize. A hash table is therefore a box referring
a vector; the first payload element of the vector (after the vector “header” word
holding the element number) is reserved to keep the hash element number, so that
the fill factor is easy to compute at any time; the other vector elements are the hash
buckets, implemented as alists or salists; of course the associated data may have
any shape. As we need the hash function to be portable with respect to unexec,
it respects the constraint in §3.3.2.2. Hashes are our most complex data structure
so far: automatic resizing, and particularly comparing fill factors with a threshold
using only fitnums requires some sophistication, but at around 250 lines our hash
table implementation in €y does not end up being overly complicated, despite our
choice of avoiding higher order procedures leading to some code redundancy:

(el:define (unboxed-hash:set! hash key value)
(e0:1let () (e0:if-in (hash:overfull? hash) (#f)
(e0:bundle)
(unboxed-hash:enlarge! hash))
(unboxed-hash:set-without-resizing! hash key value)))
(el:define (string-hash:set! hash key value)
(e0:1let () (e0:if-in (hash:overfull? hash) (#f)
(e0:bundle)
(string-hash:enlarge! hash))
(string-hash:set-without-resizing! hash key value)))

The two-way conditional performing a side effect in one branch and returning a
“dummy” bundle in the other is another code pattern which we can’t factor away
without macros.

Our first and most important application of hash tables is in the implementation of
Symbols. Since we use them as identifiers, symbols are central in our design; they
must be efficient to compare with one another, and as keys in associative structures
such as the global (§2.4.2) and procedure (§2.4.4) state environments.

The symbol table is a global hash mapping each symbol name, as a string, into
a unique boxed symbol object with that name; by requiring that all named symbols
be interned in the table, as all Lisps do, we obtain that symbol pointers can be safely
compared by identity, just like unboxed objects; interning the same name more than
once yields the same symbol object pointer:

The names “1+” and “1-” for successor and predecessor come from the Lisp tradition, which
we suppose inherited the convention from some Reverse-Polish stack language; to decrement the
top stack element in Forth, for example, we may push 1 and then subtract, replacing the two
topmost elements with the subtraction result. The Forth code is two words long: “1 -”. In fact
Forth also provides a functionally equivalent (and usually more efficient) predefined single word
“1-" factoring away the common pattern.

© 00 N O U e W N

o
[=}

5.4. Syntactic extensions: the ¢; personality 95

(el:define (symbol:intern name-as-string)
(e0:if-in (symbol:interned-symbol-name? name-as-string) (#f)
(symbol:intern-without-checking! (vector:copy name-as-string))
(string-hash:get symbol:table name-as-string)))

(el:define (symbol:intern-without-checking! name-as-string)
(e0:let (new-symbol) (symbol:make-uninterned)
(e0:let () (buffer:set! new-symbol (eO:value O) name-as-string)
(e0:let () (string-hash:set! symbol:table name-as-string new-symbol)
new-symbol))))

Following the example of several Lisps [4, 47| we also support uninterned symbols,
which is to say symbol objects with no name and hence not occurring in the symbol
table; an uninterned symbol pointer can be compared by identity with any other
symbol pointer.

The issue of what to store in the symbol object itself appears of little conse-
quence: it is useful to point the symbol name string within the symbol object, to
have an efficient mean of retrieving it when needed, typically for printing — but
apart from this, the symbol object seems much more useful for its identity than for
its content. And indeed, were it not for the problem of §3.3.2.2, we could safely
use symbol pointers like “unboxed” hashed keys for state environments (§2.4.4) such
as the global environment or the procedure table; but a better solution has been
known for decades, described for example in [82] and in embryonic form already in
[51]: the idea is to entirely do away with such global tables whenever possible, and
store the global data associated to each symbol within the symbol object itself; then
the symbol object may be seen as a record, whose fields include the symbol name,
the value in the global environment, the formal names of the symbol interpreted
as a procedure, the procedure body, and so on. Where a pointer to a symbol is
available, accessing it in a state environment only costs one load or store instruction
with constant offset. In the interest of extensibility, we also keep one alist field in
each symbol object, to which the user is free to add bindings'S.

As a natural consequence of this design, in €1 we may use the same symbol as
a key for different state environments, for example the global environment and the
procedure table, and use the same name for a global non-procedure and a proce-
dure: the possibility of using the same name as key for two (or more) distinct state
environments is what distinguishes a so-called Lisp-2, such as Common Lisp, from
a Lisp-1, such as Scheme |[32].

The Symbols section in the source code would be straightforward except for g’s
painful lack of records, which at this point we still have to simulate with buffers.

(el:define (symbol:make-uninterned)
(e0:1let (result) (buffer:make (eO:value 9))

16 An alist, later called “property list”, was actually the only datum globally associated to symbols
in [51] (p. 25), also containing a binding for the symbol name. Having fields at fixed offsets in the
record object, out of the alist, may be regarded as an optimization.

96 Chapter 5. Syntactic extension

(e0:1let () (buffer:set! result (eO:value 0) (eO:value 0)) ; name
(e0:let () (buffer:set! result (eO:value 1) (eO:value 0)) ; unbound in global environment
(e0:1et () (buffer:set! result (eO:value 2) (eO:value 127)) ; conventional unbound marker
(e0:1let () (buffer:set! result (eO:value 3) (eO:value 0)) ; empty formal list
(e0:let () (buffer:set! result (eO:value 4) (eO:value 0)) ; no procedure body

© 00 N O U ks W

10
11
12
13
14
15
16
17
18
19

(e0:1let () (buffer:set! result (eO:value 5) (eO:value 0)) ; no macro definition
(e0:1let () (buffer:set! result (eO:value 6) (eO:value 0)) ; no macro procedure
(e0:1let () (buffer:set! result (eO:value 7) (eO:value 0)) ; no primitive descriptor
(e0:1let () (buffer:set! result (eO:value 8) alist:nil) ; no extensions

result))))))))))

(el:define (state:global-set! name value)

(e0:let () (buffer:set! name (eO:value 1) (eO:value 1)) ;; the name is bound as a global

(buffer:set! name (e0:value 2) value))) ;; value

(el:define (state:procedure-set! name formals body)

(e0:let () (buffer:set! name (eO:value 3) formals)
(buffer:set! name (e0:value 4) body)))

Only from this point on we can find instances of symbol literals in the source, such
as (e0:value foo): in the Scheme implementation of £y from Phase (ii), e0:value
is a Guile macro which generates a whatever object at Scheme macroexpansion time,
calling the functionality above for named symbols. The same holds for string literals
in the Strings section above, but the case of symbols is much more remarkable due
to their greater complexity and due to a global structure being involved.

Finally we provide a functionality to automatically generate fresh symbols, par-
ticularly useful for machine-generated code. Fresh symbols are interned and have a
name starting with a prefix the user is not supposed to use in her own identifiers,

[1h

currently “_”. We adopted this solution based on a convention rather than the alter-

native of using uninterned symbols because of the need to extract all symbols from
the symbol table (see for example state:global-names in §3.1); moreover interned
symbols with a conventional prefix are easier to print and read, when needed for
debugging. Assuming that “_"-prefixed symbols do not occur in user identifiers,

generated symbols may be safely garbage-collected!”.

The Fzxpressions section defines ey expressions, as per Definition 2.1 plus call-
indirect (§5.4.1.2), as a data structure. An expression may be conceptually seen
as a sum-of-products in the style of ML, and in practice it is implemented as a boxed
object: the pointed buffer contains an expression case tag in its first position; the
expression handle, present in all cases, resides in the second element; the other ele-
ment contents, and the buffer length, depend on the specific expression case. Where
expressions require homogeneous sequences of undetermined length (for example
bundle items and if conditional cases), by convention we always use lists.

There are operators to build, inspect, update, and explode (obtain all compo-

nterned symbols are not yet garbage collected at the time of writing. A solution is employing
“_"-prefixed symbols, implemented as a weak hash table [98]. Globals
and procedures explicitly named by the user should cannot be safely destroyed in general, as they
could be referenced in the future, possibly by dynamically-created expressions.

a second symbol table for for

© 000 N O U kW N =

© 0 N O U ke W N =

=
= o

5.4. Syntactic extensions: the ¢; personality 97

nents as a bundle) expressions. Such code could conceptually be written by hand,
but due to its regularity and length we chose to generate it with a Scheme program;
the machine-written g code is the first non-comment line in the section, easy to spot
as the lone, huge 14000-character line with only the minimum required whitespace.

Our expression as managed by the program-generated code has the exact same
memory representation as an equivalent data structure defined (much later: see
§5.4.4.3) by our general sum-of-product definition facility.

The machine-generated expression constructors require to always specify all
components, including handles. As the practice is tedious and we can easily gen-
erate fresh handles (as fixnums), we also provide a set of hand-written wrappers,
named after the symbols identifying the corresponding expression case in expansion
followed by an “*” character.

(el:define e0:handle-generator-box
(box:make-initialized (e0O:value 0)))
(el:define (eO:fresh-handle)
(box :bump-and-get! e0:handle-generator-box))

(el:define (e0:variablex* name)

(e0:expression-variable-make (eO:fresh-handle) name))
(el:define (e0O:call* name actuals)

(e0:expression-call-make (eO:fresh-handle) name actuals))

For example the ¢y expression which (eO:call p 57) expands to may be built
by (e0:call* (e0O:value p) (list:singleton (eO:valuex* 57))), which is not
unreadable after considering how the literal constant expression which 57 expands
to, being an expression, has a different representation from the fiznum 57.

It may be worth to explicitly stress how the ¢ implementation of Phase (i)
does not rely at all on the g9 expression data structure as defined in this section.

The next section State: global dynamic state, with reflection conceptually imple-
ments state environments, but for the most part is actually a thin wrapper over
buffer accessors used on symbol objects. For example, the following definitions
concern the “procedure table”, despite it not existing anywhere as a single data
structure:

(el:define (state:procedure? name)
(state:procedure-get-body name)) ;; #f iff unbound, which is to say return the body

(el:define (state:procedure-get-formals name)
(buffer:get name (e0:value 3)))

(el:define (state:procedure-get-body name)
(buffer:get name (e0:value 4)))

(el:define (state:procedure-get-in-dimension name)
(list:length (state:procedure-get-formals name)))

(el:define (state:procedure-get name)
(e0:bundle (state:procedure-get-formals name)

(state:procedure-get-body name)))

12
13
14
15
16
17
18

© 00 N O Uk W N =

e e e
=W N = O

[un
ot

98 Chapter 5. Syntactic extension

(el:define (state:procedure-set! name formals body)
(e0:1let () (buffer:set! name (e0:value 3) formals)
(buffer:set! name (eO:value 4) body)))
(el:define (state:procedure-unset! name)
(e0:let () (buffer:set! name (eO:value 3) list:nil)
(buffer:set! name (e0:value 4) (eO:value 0)))) ;; make the body invalid

It is obvious at this point that our implementation of el:define from Phase (i)
could not update e1’s state environments such as the global environment and the
procedure table, which we have just implemented: up to this point anything which
has been globally defined in Phase (7ii) has been only set in Guile’s state environ-
ments. This problem will persist until Phase (iv).

By examining all the buckets in the symbol table it is easy to obtain the list of all
interned symbols bound to a procedure, or a primitive. From this information we can
automatically build an apply function in the style of |72], plus another procedure in
the same spirit for primitives, without resorting to indirect calls. The automatically-
generated procedures state:apply and state:apply-primitive (collectively appli-
ers) each take two arguments, a symbol naming the object to call, and a parameter
list. The generated applier body consist in a deeply-nested conditional, comparing
the first parameter with each applicable name: when the matching name is found
the applier calls the corresponding procedure or primitive, returning its results.

Generating appliers is our first example of dynamically-generated code in the
implementation. Of course such generation heavily relies on dynamically-built g
expressions.

Armed with global tables we are finally ready to implement a working interpreter
in the next section, epsilon0 self-interpreter.

The interpreter code is not overly complex and the main procedure e0:eval is
but a long dispatcher, selecting the appropriate expression case and tail-calling a
helper procedure. Its second parameter is the local environment, encoded as an
alist:

(el:define (e0:eval e local)
(e0:if-in (e0:expression-variable? e) (#t)
(e0:let (h name) (e0:expression-variable-explode e)
(e0:eval-variable name local))
(e0:if-in (eO:expression-value? e) (#t)
(e0:1let (h content) (e0:expression-value-explode e)
(e0:eval-value content))
(e0:if-in (e0:expression-bundle? e) (#t)
(e0:1let (h items) (eO:expression-bundle-explode e)
(e0:eval-bundle items local))
(e0:if-in (eO:expression-primitive? e) (#t)
(e0:1let (h name actuals) (e0:expression-primitive-explode e)
(e0:eval-primitive name actuals local))
(e0:if-in (e0:expression-let? e) (#t)

(e0:let (h bound-variables bound-expression body) (e0:expression-let-explode e)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

© 0 N O U ke W N =

e
= o

5.4. Syntactic extensions: the ¢; personality 99

(e0:eval-let bound-variables bound-expression body local))
(e0:if-in (e0:expression-call? e) (#t)
(e0:let (h name actuals) (e0:expression-call-explode e)
(e0:eval-call name actuals local))
(e0:if-in (eO:expression-call-indirect? e) (#t)
(e0:1let (h procedure-expression actuals) (eO:expression-call-indirect-explode e)
(e0:eval-call-indirect procedure-expression actuals local))
(e0:if-in (e0:expression-if-in? e) (#t)
(e0:1let (h discriminand values then-branch else-branch)
(e0:expression-if-in-explode e)
(e0:eval-if-in discriminand values then-branch else-branch local))
(e0:if-in (e0:expression-fork? e) (#t)
(e0:let (h name actuals) (e0:expression-fork-explode e)
(e0:eval-fork name actuals local))
(e0:if-in (e0:expression-join? e) (#t)
(e0:let (h future) (eO:expression-join-explode e)
(e0:eval-join future local))
(e0:if-in (e0:expression-extension? e) (#t)
(e0:let (h name subexpressions) (e0:expression-extension-explode e)
(e0:eval-extension name subexpressions local))
(el:error (eO:value "impossible"))))))))))))))

In order to keep the code understandable despite the deeply-nested conditionals
we chose not to assume generalized booleans in e€0:eval, making sure that all the
predicates we used only return #t or #f.

Several helper procedures in their turn rely on e0:eval-expressions, which
sequentially evaluates a list of expressions which have to return 1-dimension bundles,
and returns the result list.

Many interpreter procedures are strongly interdependent and mutually recursive,
which is served quite well by procedural abstraction. It is very convenient to define
mutually-recursive procedures without concern for the definition order, so that the
programmer does not need to keep a call graph in her mind.

(el:define (e0:eval-expressions expressions local)
(e0:if-in expressions (0)
list:nil
(list:cons (e0:unbundle (eO:eval (list:head expressions) local))
(e0:eval-expressions (list:tail expressions) local))))
(el:define (e0:unbundle bundle)
(e0:if-in (list:null? bundle) (#f)
(e0:if-in (list:null? (list:tail bundle)) (#f)
(el:error (e0:value "eO:unbundle: the bundle has at least two elements"))
(list:head bundle))
(el:error (e0:value "eO:unbundle: empty bundle"))))

Most helper procedures dealing with specific expression cases end up being simple:

© 00 N O U e W N

e e T S S
D Gk W N = O

100 Chapter 5. Syntactic extension

(el:define (e0:eval-variable name local)
(list:singleton (e0:if-in (alist:has? local name) (#f)
(state:global-get name)
(alist:lookup local name))))

(el:define (eO:eval-value content)
(list:singleton content))

(el:define (eO:eval-if-in discriminand values then-branch else-branch local)
(e0:let (discriminand-value) (eO:unbundle (eO:eval discriminand local))
(e0:if-in (list:memq discriminand-value values) (#f)
(e0:eval else-branch local)
(e0:eval then-branch local))))

(el:define (e0:eval-bundle items local)
(e0:eval-expressions items local))

A possibly striking implementation choice consists in encoding g bundles as lists;
this is necessary for examining bundle results, for example by testing their length
— the fact that bundles are not denotable (§2.1.5) makes them hard to deal with
directly, in exchange for their potential efficiency in a compiled implementation.
But ironically in this self-interpreter, where however performance is not a priority,
the need of building lists for bundles entails a high rate of heap allocation, which is
expensive.

The self-interpreter does not rely on explicit stacks and is quite far from the
semantics in §2.5; yet, of course without hope of certifying the implementation here,
we claim that we believe it respects the semantics and implementation notes of §2.

With the most fundamental addend types at our disposal we are ready to deal
with general support for user-defined types, in the Type table section.

We start with building support for tracking the extensible set of “types” recog-
nized by the system, such as the empty list, booleans, fixnums, and conses; since in
this context we assume dynamic typing, there is no need for type parameters: all
the subcomponents of an s-expressions are tagged, at any level.

As types tend to be relatively few in number and this reflective information is
not particularly critical to performance, in this case we preferred a global table to
the alternative of reserving fields in all symbol objects.

Information for each type (empty list, boolean, fixnum, cons, string, ...) is en-
coded in a descriptor record implemented as a buffer, also containing a unique tag,
other information including a printer procedure, and once again an alist which the
user may employ to add more fields as type-dependent attributes — it is unfor-
tunately too early to define a general-purpose “extensible record” data structure,
without any support for syntactic abstraction.

The most interesting fields in type descriptor records is the expression-expander
procedure name. An expression-expander specifies how to turn an object of the

DGt s W N =

© 00 N O U ke W N =

5.4. Syntactic extensions: the ¢; personality 101

given type into an expression. Since of course we provide procedures to update the
type table, the user has the power to define and change the way addends expand,
including, for example the mapping from a symbol into a variable as discussed in
Syntactic Convention 5.7 and §5.3.2.

All support for macros, following Lisp syntactic conventions'®, will be defined
later in procedures called in its turn by the cons expander procedure; our predefined
expanders will implement expansion in a way compatible with Definition 5.8.

Definition 5.10 (expression-expander) Let Ay, ...,A,—1 be the addend types of
S. Then the expander procedure for A; or A;-expander is a procedure of one param-
eter returning one result. The procedure is guaranteed not to fail if the parameter
has type A;, in which case the result has type E. o

Most atomic objects such as the empty list, booleans and fixnums, are expression-
expanded by sexpression:literal-expression-expander into a literal constant
expression, which will finally allow the user to omit explicit “e0:value”s for non-
symbol literals; sexpression:variable-expression-expander expression-expands
a symbol into a variable expression; sexpression:expression-expression-expander
trivially expression-expands an expression into itself. Cutting away some comments:

(el:define (sexpression:literal-expression-expander whatever)
(e0:value* whatever))

(el:define (sexpression:variable-expression-expander symbol)
(e0:variable* symbol))

(el:define (sexpression:expression-expression-expander expression)
expression)

The cons expression expander is not complicated either, and resembles Syntactic
Convention 5.7 (p. 78) in regarding the procedure call as a “default case”. It can be
already seen from this code how even g syntactic forms are implemented as macros:

(el:define (sexpression:cons-expression-expander cons)
(e0:1let (car-sexpression) (cons:car cons)
(e0:if-in (sexpression:symbol? car-sexpression) (#f)
(el:error (eO:value "cons:expression-expander: the car is not a symbol"))
(e0:let (car-symbol) (sexpression:eject-symbol car-sexpression)
(e0:if-in (state:macro? car-symbol) (#f)

;; The car is a symbol which is not a macro name:
(e0:call* car-symbol (el:macroexpand-sexpressions (cons:cdr cons)))
(el:macroexpand-macro-call car-symbol (cons:cdr cons)))))))

Lines 3-4 show how the specific cons-expander above is not suitable for higher-order
personalities where the operator can be encoded by an s-expression different from
an s-symbol. Of course the user is free to replace the cons-expander at a later time.

18Common Lisp also supports “symbol macros” [4]: some symbols defined by the user are
macroexpanded like zero-parameter macro calls. Support for a similar feature can be added in
€1 by changing the symbol, rather than cons, expander.

© 00 N O U kW N =

NN N R R R e R R R e
W N R O © X N U W N R O

102 Chapter 5. Syntactic extension

The S-expressions section deals with the implementation of s-expressions as data
structures, and operations over them. Some of our procedures defined up to this
point already call procedures working over s-expressions such as sexpression:
symbol?, sexpression:eject and sexpression:inject-cons in procedure bod-
ies — although of course our procedures calling not-yet-defined procedures have
never been called themselves, yet.

The specific memory representation of an s-expression object has always been
seen considered important for efficiency in Lisp: all practical Lisps employ some
form of bitwise tagging of unboxed objects, boxed pointers and/or buffer words,
allowing to store in a compact way elements of the most common addends; such rep-
resentation techniques are often complex (see [21, §Data Representation| for Guile’s
solution and [35] as a useful collection of “a body of folklore”), but such complexity
is motivated by the need for tagging all'® data in Lisp.

However the situation of 1 is quite different from Lisp: s-expressions are mostly
used for representing user syntax before macroexpansion, but not necessarily as a
data structure after macroexpansion. Even if an efficient implementation is certainly
possible (potentially by machine generation as in [75]) for the time being we make do
with a quite literal implementation of Definition 5.1: we represent an s-expression as
a pointer to a two-element buffer, whose first cell holds the type tag while the second
holds the representation of the addend-type content. Some sample definitions:

(el:define (sexpression:make tag value)
(cons:make tag value))

(el:define (sexpression:get-tag sexpression)
(cons:get-car sexpression))

(el:define (sexpression:eject sexpression)
(cons:get-cdr sexpression))

(el:define (sexpression:has-tag? x tag)
(whatever:eq? (sexpression:get-tag x) tag))

;; We have generated unique tags when adding entries to the type table
(el:define (sexpression:null? x)
(sexpression:has-tag? x sexpression:empty-list-tag))
(el:define (sexpression:boolean? x)
(sexpression:has-tag? x sexpression:boolean-tag))
(el:define (sexpression:cons? x)
(sexpression:has-tag? x sexpression:cons-tag))

(el:define (sexpression:inject-fixnum x)
(sexpression:make sexpression:fixnum-tag x))
(el:define (sexpression:eject-fixnum x)
(e0:if-in (sexpression:fixnum? x) (#f)
(el:error (e0:value "sexpression:eject-fixnum: not a fixnum"))
(sexpression:eject x)))

19 Advanced optimizing Lisp compilers such as SBCL [73] may actually avoid run-time tagging
at some code points, in cases when a type inference analysis succeeds and in favorable contexts.
This optimization, however, is not possible for the bulk of the code.

24
25
26
27
28
29
30
31
32
33

© 0 N O U e W N

[un
[=}

=

(SN Y N V]

5.4. Syntactic extensions: the ¢; personality 103

(el:define sexpression:nil ;; an empty s-list object
(sexpression:make sexpression:empty-list-tag empty-list:empty-list))
(el:define (sexpression:car x)
(e0:if-in (sexpression:cons? x) (#f)
(el:error (e0:value "sexpression:car: not a cons"))
(cons:get-car (sexpression:eject x))))

(el:define (sexpression:cadr x) (sexpression:car (sexpression:cdr x)))
(el:define (sexpression:caadr x) (sexpression:car (sexpression:cadr x)))

In our representation all s-expressions are boxed, and even traditionally “unique”
objects such as the empty s-list or s-booleans may exist in more than one instance.

We also define alternate versions of some procedures over fixnums and lists suit-
able to work on s-fixnums and s-lists, as it will be convenient later in macros to
manipulate s-expressions without explicit injections and ejections:

(el:define (sexpression:1+ x)
(sexpression:inject-fixnum (fixnum:1+ (sexpression:eject-fixnum x))))

(el:define (sexpression:reverse x)
(sexpression:append-reversed x sexpression:nil))
(el:define (sexpression:append-reversed x y)
(e0:if-in (sexpression:null? x) (#f)
(sexpression:append-reversed (sexpression:cdr x)
(sexpression:cons (sexpression:car x) y))

)

5.4.1.4 Macros

Still following the bootstrap code in core.e, we are now finally ready to add support
for Macros.

The el:macroexpand20 procedure, turning an s-expression into a correspond-
ing expression, is but a trivial dispatcher tail-calling the appropriate expression-
expander; but some expanders, as by the default the one for cons does, may involve
expanding actual macro calls.

(el:define (el:macroexpand s)
(e0:let (tag) (sexpression:get-tag s)
(e0:1let (content) (sexpression:eject s)
(e0:call-indirect (sexpression:type-tag->expression-expander-procedure-name tag)
content))))

The general idea of macros is simple enough?!: the user defines each macro “in

concrete syntax” as an s-expression, often relying on other macros. Before a macro

20The name “macroexpand” may not be entirely appropriate, but has long been traditional in
Lisp circles. Even an s-expression containing no macro calls can be successfully “macroexpanded”.
21Our mechanism is in practice not unlike the Common Lisp or Emacs Lisp macro systems,
despite our explicit distinction between expressions and s-expressions. Common Lisp uses an

© 00 9 O U R W N

— e
=]

104 Chapter 5. Syntactic extension

call can be expanded the macro body itself must have been macroexpanded in its
turn into an expression, which makes up the body of the associated macro procedure.
At macro call time, the macro procedure is called by supplying it with the macro
actuals; the macro procedure result, an s-expression, is then macroexpanded in
its turn, which may involve expanding other macro calls. If the process does not
diverge, the final result will be an expression. Since predefined macros allow to
express all €9 forms our macro system is trivially Turing-complete, already because
of macro procedures. Of course it is permitted, and useful, for a macro to return
another macro call: this allows to build upon user-defined forms, “stacking” syntactic
abstractions one onto another.

Macro definition and lookup are easy enough, based as they are is on symbol
objects similarly to the global and procedure state environments:

(el:define (state:macro-set! macro-name macro-body-sexpression)
(e0:1let O
;3 If we’re re-defining an existing macro, invalidate its previous procedure:
(e0:if-in (buffer:get macro-name (e0O:value 5)) (0)
(e0:bundle)
(state:invalidate-macro-procedure-name-cache-of! macro-name))
(buffer:set! macro-name (eO:value 5) macro-body-sexpression)))
(el:define (state:macro-get-body macro-name)
(buffer:get macro-name (e0O:value 5)))
(el:define (state:macro? name)
(state:macro-get-body name)) ;; O iff unbound, which is to say return the body

The careful reader may have noticed a small difference in state:macro-set! com-
pared to the analogous code for procedures: no formal parameters names are pro-
vided for macros. This absence is a conscious choice of ours, leading to a small
simplification: as no nonlocal is ever visible from a macro body, parameter shad-
owing is impossible and we can safely use the same formal name “arguments” for
all macros. Moreover we can use one formal for all the parameters of a macro
call by viewing them as an s-expression, which is to say the s-cdr of the macro call
s-expression — for example (m a (324) 3) has parameters (a (324) 3).

Of course we will also add support for friendlier macros with named formals,
later as a syntactic extension.

As a concession to efficiency we cache macro procedures, by generating them at
the time of the first expansion of a macro call and then re-using them. It is impor-
tant to specify this point, because in rare cases caching may have a observable effect
on the result — that is the case of macros performing side effects very early, while
building the returned expression.

The corresponding code is surprisingly simple, ignoring the references to trans-
formations for the time being:

auxiliary procedure “macroexpand-1” returning two results: the result of expanding one call, and
a boolean saying whether expansion should continue. In our case we can simply use expression-
expanders, which in the terminal case will receive an injected expression.

© 00 N O U e W N

[N e - T e T T e e T = T
@ N R O © 0 N U W N = O

o

N O O ke WN

=

gt W N

5.4. Syntactic extensions: the ¢; personality 105

(el:define (state:macro-get-macro-procedure-name macro-name)
(e0:1let (cached-macro-procedure-name-or-zero) (buffer:get macro-name (eO:value 6))
(e0:if-in cached-macro-procedure-name-or-zero (0)
(state:macro-get-macro-procedure-name-ignoring-cache macro-name)
cached-macro-procedure-name-or-zero)))

(el:define (state:macro-get-macro-procedure-name-ignoring-cache macro-name)
(e0:let (body-as-sexpression) (state:macro-get-body macro-name)
(e0:let (untransformed-name) (symbol:fresh)
(e0:let (untransformed-formals) (list:singleton (e0:value arguments))
(e0:1let (untransformed-body) (el:macroexpand body-as-sexpression)
(e0:1let () (state:procedure-set! untransformed-name
untransformed-formals
untransformed-body)
(e0:let (transformed-name transformed-formals transformed-body)
(transform:transform-procedure untransformed-name
untransformed-formals
untransformed-body)
(e0:let () (state:procedure-set! transformed-name
transformed-formals
transformed-body)
(e0:1let () (buffer:set! macro-name (e0:value 6) transformed-name)
transformed-name)))))))))

A macro call expansion consists in macroexpanding one call into an s-expression
and then tail-calling to a further macroexpansion of the result, which will hopefully
terminate; the usual terminal case is an injected expression.

(el:define (el:macroexpand-1l-macro-call symbol arguments)
(e0:1let (macro-procedure-name) (state:macro-get-macro-procedure-name symbol)
(e0:call-indirect macro-procedure-name arguments)))

(el:define (el:macroexpand-macro-call symbol arguments)
(e0:let (sexpression-after-one-expansion) (el:macroexpand-1l-macro-call symbol arguments)
(el:macroexpand sexpression-after-one-expansion)))

Just for completeness we also show the trivial helper, called by the cons expander,
which macroexpands an s-list of s-expressions into a list of expressions, left-to-right:

(el:define (el:macroexpand-sexpressions sexpressions)
(e0:if-in (sexpression:null? sexpressions) (#f)
(list:cons (el:macroexpand (sexpression:car sexpressions))
(el:macroexpand-sexpressions (sexpression:cdr sexpressions)))
list:nil))

We close by developing an illustrative and we hope not too artificial example. Let
us assume to have somehow added an el:trivial-define-macro form for globally
defining a macro, internally using state:macro-set!; el:trivial-define-macro
has two parameters: the macro name, and the macro body s-expression. We use
el:trivial-define-macro to define our sample macro:

© 00 N O U e W N

o
[=}

106 Chapter 5. Syntactic extension

(el:define (sexpression:list3 a b c)
(sexpression:cons a (sexpression:cons b (sexpression:cons c sexpression:nil))))

(el:trivial-define-macro silly-square
;3 We would write ‘(fixnum:* ,(sexpression:car arguments)
33 , (sexpression:car arguments))
;3 1f we already had quasiquoting.
(sexpression:1ist3 (sexpression:inject-symbol (eO:value fixnum:x*))
(sexpression:car arguments)
(sexpression:car arguments)))

The silly-square macro takes at least one parameter (ignoring any one after the
first) and returns an expression multiplying the parameter by itself; the resulting
expression will contain two copies of the macroexpanded parameter, which therefore
will be evaluated twice.

For example, (silly-square 4 5 6) would eventually macroexpand to [call
fixnum:* 4y, 4y |, for some fresh hi, by, by € H.

When calling el:macroexpand on (silly-square 4 5 6) we immediately go
through the cons expression-expander; assuming that silly-square is not a pro-
cedure name, we tail-call el:macroexpand-macro-call with two parameters: the
symbol silly-square, and the s-list (4 5 6); el:macroexpand-macro-call at-
tempts to expand the first call by using el:macroexpand-1-macro-call. Assuming
silly-square has not been used before, state:macro-get-macro-procedure-name
builds its macro procedure, which requires several expression-expansion calls not in-
volving macros; state:macro-get-macro-procedure-name then returns the macro
procedure name to el:macroexpand-1-macro-call, which calls it on (4 5 6); the
result is the s-expression (fixnum:* 4 4), which is returned by el:macroexpand-1-
macro-call; so control goes back to el:macroexpand-macro-call, which tail-calls
el:macroexpand on (fixnum:* 4 4); by trivial expression-expansions, we finally
obtain the expression [call fixnum:* 4y, 4y | .

5.4.1.5 Transforms

Many mathematical presentations deal with “transformations”, meant as code-to-
code functions. Our transform strategy adopts the same approach, with the sole
significant extension of also permitting side-effecting procedures.

When building a transform, the user or personality developer has to simply define
ordinary procedures working on code, and then to “hook” them to the system. There
are two reasonable ways of running such transform procedures:

e a procedure can be applied retroactively to the current state, adding (and
usually replacing) definitions;

e or it can be installed, to be applied automatically in the future to each toplevel
expression or each procedure created from that point on; since the composi-
tion order is usually significant, the user can control where each transform
procedure fits in a global list of names.

5.4. Syntactic extensions: the ¢; personality 107

In general we are interested in transforming three different entities: expressions,
procedure bindings, and global bindings. Transform procedures will need to be dif-
ferent for each case, since the procedure interface cannot be compatible; but in our
experience, “companion” transform procedures tend to rely on some common helper
doing most of the actual work: for example, closure-converting a procedure binding
involves closure-converting its body, which is an expression (§5.4.4.4).

Global bindings are difficult to work with in practice, since they contain already-
evaluated values with no fixed shape, rather than expressions; we have not yet
found a use for global binding transform procedures, but we include such support
for symmetry reasons.

For generality’s sake, we decided to have binding transform procedures also return
a transformed name: this may be either the same as the original untransformed
binding, or a new one. It might be convenient to keep the old definition around for
debugging reasons, for example, but change all the uses of the old entity to new one,
by systematically renaming references.

A transform procedure may have one of three different interfaces:

e one parameter — one result, to transform an expression;

o three parameters — three results, to transform a procedure binding: name,
formals, body;

e two parameters — two results, to transform a global binding: name, value.

The ultimate purpose of our code-rewriting system is to let the user write in an
expressive high-level language, to be then automatically reduced to g9 by “trans-
forming away” extensions. The transform procedures mapping “syntax into syntax”
therefore will need to support not only syntax, but extended syntax as data. We
will show an elegant solution to this problem in §5.4.4.3, but we do not need to be
concerned with it now while discussing the code which invokes procedure transforms.
As a less obvious consequence of our design, side-effecting transforms provide for
another interesting opportunity: a simple way of performing a code analysis is to
implement a trivial transform procedure returning its parameters unchanged while
recoding data in some global structure, possibly a global table with handles (§2.1.3) as
keys. Transforms actually returning modified code might also store their parameters
somewhere or simply record the relation between transformed an untransformed
code?? in some global structure, available for later debugging or analysis.
Transforms are also a convenient way to run some optimizations rewriting ex-
pressions into more efficient versions. As a first “low-hanging fruit” we plan to use
some heuristic search algorithm such as hill-climbing to search the neighborhood of

22 A practical problem of the current implementation which makes debugging difficult is the lack
of a reverse mapping from code to its original untransformed form and ultimately to its the s-
expression concrete syntax and source location. Solving this problem requires some care in writing
transform, parsing and expression-expansion procedures, so that when an expression is built from
others, its origin is somehow recorded in a graph. A linguistic extension to somehow automate this
tracing process might be appropriate.

© 0 N O U W N

== e
No= O

© 00 9 O U R W N =

=R e
N o= O

108 Chapter 5. Syntactic extension

an expression for operationally-equivalent but faster versions.

We are finally ready to present some of the code in the Transforms section. At
around 150 lines the code is quite short and also very uniform, often present in
three just slightly different versions because of the three entities to manage.

The global lists of transform names to be applied in order are simple boxed
global variables:

(el:define transform:expression-transforms (box:make-initialized list:nil))
(el:define transform:procedure-transforms (box:make-initialized list:nil))
(el:define transform:global-transforms (box:make-initialized list:nil))

(el:define (transform:prepend-expression-transform! new-transform-name)
(box:set! transform:expression-transforms

(list:cons new-transform-name (box:get transform:expression-transforms))))

(el:define (transform:append-procedure-transform! new-transform-name)
(e0:let () (box:set! transform:procedure-transforms
(list:append2 (box:get transform:procedure-transforms)
(list:singleton new-transform-name)))

(state:invalidate-macro-procedure-name-cache!))) ;; All macros have to be re-transformed

The interaction with macros is interesting as it reminds us that an untransformed
procedure may be incompatible with its transformed version (for example, in a CPS
transform the argument number may change): it is hence important to invalidate
any cached macro procedure, so that new ones are created, and subjected to the
current transforms.

Applying transform procedures is trivial; this is the code which gets executed
when a procedure binding is transformed; the other two cases are essentially identi-
cal.

(el:define (transform:transform-procedure name formals body)
(e0:let (transform-names) (box:get transform:procedure-transforms)
(transform:apply-procedure-transforms transform-names name formals body)))

(el:define (transform:apply-procedure-transforms remaining-transforms name formals body)

(e0:if-in remaining-transforms (0)
(e0:bundle name formals body)
(e0:let (transformed-name transformed-formals transformed-body)
(e0:call-indirect (list:head remaining-transforms) name formals body)
(transform:apply-procedure-transforms (list:tail remaining-transforms)

transformed-name
transformed-formals
transformed-body))))

Retroactive transformation is more interesting. The user will call transform:
transform-retroactively! to install transform procedures for global and pro-
cedure bindings, also specifying the names of some objects not to transform.

(el:define (transform:transform-retroactively! globals-not-to-transform
value-transform-names

© 00 N O U ks W

10
11
12
13
14

s oW N R

-

=W N

5.4. Syntactic extensions: the ¢; personality 109

procedures-not-to-transform

procedure-transform-names)

(e0:let (global-names) (list:without-list (state:global-names) globals-not-to-transform)
(e0:1let (procedure-names)
(list:without-list (state:procedure-names) procedures-not-to-transform)
(e0:1let (transformed-name-global-list)
(transform: compute-transformed-globals global-names value-transform-names)
(e0:let (transformed-name-formal-body-list)
(transform: compute-transformed-procedures procedure-names
procedure-transform-names)
(e0:primitive state:update-globals-and-procedures! transformed-name-global-list
transformed-name-formal-body-1list))))))

The code works by first computing all transformed bindings (the trivial helpers
transform: compute-transformed-globals and transform: compute-transformed-
procedures simply return a list of transformed bindings) without performing any
global update; then, with a single primitive call, it activates all new bindings.

Why having such a complex primitive written in C? And why do we have to
compute all the bindings before applying any? The answer is that we need the state
environment update to be performed atomically®®, again because of the incompatibil-
ity introduced by some transforms. The alternative of updating global definitions in
go would fail when at some point the updater procedure itself or its helpers would be
reached by the incompatible change wave, and break on a call from an untransformed
procedure to a transformed one, or vice-versa. For this reason only, state:update-
globals-and-procedures! must be a primitive.

The REPL section is the last interesting part of core.e. Its helper procedure
repl:macroexpand-transform-and-execute can be given an s-expression to expression-
expand, transform and evaluate:

(el:define (repl:macroexpand-transform-and-execute sexpression)
(e0:let (untransformed-expression) (el:macroexpand sexpression)
(e0:let (transformed-expression) (transform:transform-expression untransformed-expression)
(e0:eval-ee transformed-expression))))

The REPL itself is very crude, and currently relies on a primitive io:read-sexpression
calling Scheme from C' to read a Guile s-expression and then convert it into our rep-
resentation. This lack of a real frontend written in £; is the last remaining reason
why we still depend on Guile after bootstrap (§5.4.5).

(el:define (repl:repl)
(e0:let () (string:write "Welcome to the epsilon REPL\n")
(repl:loop (io:standard-input))))
(el:define (repl:loop port)

ZNothing to do with concurrency, in this case. Our current code does not even support syn-
chronization primitives other than join, so background threads performing imperative operations
are not used at all.

© 0 9 o w

10

110 Chapter 5. Syntactic extension

(e0:let () (string:write "el>\n")
(e0:let (next-sexpression) (eO:primitive io:read-sexpression port)
(e0:let (results) (repl:macroexpand-transform-and-execute next-sexpression)
(e0:1let () (repl:write-results results port)
(e0:let () (string:write "\n")
(repl:loop port)))))))

5.4.1.6 An aside: developing, testing, and the ordering of phases

In this presentation we have chosen to show the final structure of our bootstrapping
system as a working body of code, rather than recounting the process of writing it;
the two views do not perfectly overlap.

The preceding phase is by far the most problematic in this respect: as any reader
with implementation experience may witness €; with its interpreter, global data
structures, macro and transform systems is a very strongly recursive system, where
each component tends to require all the others in a loop of circular dependencies
apparently very difficult to break. And indeed, the preceding third phase was not
easy to implement on the machine.

After deciding on the general bootstrapping strategy we wrote a first approxi-
mation of the system, in £y with with no macros (see next phase) and no transforms,
up to the interpreter included. Some subsystems, for example the implementation
of sum-of-products types for ¢ expressions, were first prototyped in Guile. Trans-
formations were added as the very last step, after macros worked reliably and were
used to make € considerably more friendly.

With the marshalling /unmarshalling support needed for unezec (§3.3.2), we fol-
lowed a route of progressively reducing the abstraction level: after writing its first
version in €1 using several comfortable language extensions, we translated it into
€0, to make it possible to run it earlier at boot, when extensions are not loaded
yet. The translated marshalling code is understandable, but some complexity which
would have been a little too daring for g still shows up in the code, particularly in
nested conditionals.

Later we rewrote the marshalling and unmarshalling support for a third time in
C, for performance reasons (§5.4.3).

At the beginning we wrote a considerable body of debugging code in Scheme, includ-
ing for example for example the procedure print-expression writing expressions in
€o’s syntax of §2 including handles in Unicode subscript digits, or hash-dump-sizes
which has served to test how well our hash functions distribute; and maybe most im-
portantly meta:print-procedure-definition and meta:print-macro-definition,
useful for inspecting the global state and obtain readable syntax. Such code is still
available in bootstrap/scheme/conversion.scm, and still occasionally useful for
debugging:

guile> (meta:print-procedure-definition ’cons:make)
Formals: (car cdr)

5.4. Syntactic extensions: the ¢; personality 111

[let [result] be [call buffer:make 2779]7s0 in [let [] be [call buffer:set! resultrgi; O7g2
car7gzl7sa in [let [] be [call buffer:set! resultrgs 1l7s¢ cdrrsr]l7gs in resultrggl790l791]792

guile> (meta:print-macro-definition ’e0:call)
(sexpression:inject-expression (eO:call* (sexpression:eject-symbol (sexpression:car arguments))

© 00 N O U ks W

10
11
12
13

(el:macroexpand-sexpressions (sexpression:cdr arguments))))

guile> (eO:value whatever:identity) ;; the symbol dump is painful to read

0x1471040[0x14c41e0[17 119 104 97 116 101 118 101 114 58 105 100 101 110 116 105 116 121]
0 127 0x1409f00[0x14633c0[0x145c900[1 120] 0 127 0 0 0 0 O 0] 0] 0x1462b80[0 10 0x14633c0]

00 0 0]

But as our design of €; changed until its crystallization into the present form, some
of our crude debugging and code-generating tools also broke down and became
unusable, whenever their underlying assumptions failed. As old scaffoldings not
supporting any more a structure now able to stand by itself, we abandoned them.

Our bootstrapping code running on top of an inefficient extension to Guile had
low performance, which was unsurprising. What we didn’t expect was that waiting
times were in practice so unbearable even on our fastest machine?* that it necessi-
tated optimizations already in this phase. §5.4.3 provides some insights.

5.4.1.7 Phase (iv): fill reflective data structures

Phase (1) consisted of about 2500 lines in g, which we have executed on top
of the gy implementation of Phase (ii) based on guile+whatever; in other words,
our global definitions up to this point affected Guile’s state environments, rather
than ours. This phase consists in using the Guile data structures we updated at
each definition to fill “reflective data structures” — in quotes, since we are actually
speaking of data to be stored as part of symbol objects.

The code is in bootstrap/scheme/fill-reflective-structures.scm.

Our Scheme implementation of e1:define from Phase (7i), at the end of bootstrap/
scheme/epsilonO-in-scheme.scm, updates two global Scheme data structures:
globals-to-define, a list of names of non-procedure globals which have been de-
fined, and procedures-to-define, an alist binding each defined procedure name
to its formals as a Guile list and its body as a Guile s-expression. The idea is to
scan the lists and for each element to copy the corresponding data into our state
environments.

e Non-procedures are easy to manage: given a global name as a Guile symbol
we simply have to look it up as a Guile global: the value we find, an in-
jected whatever, has to be copied into the appropriate field of the 1 symbol
corresponding to the Guile symbol.

24 optimum is a Dell Precision T7400 with two quad-core Intel Xeon (EM64T) chips at 3GHz,
8Gb of RAM, heavily customized debian GNU /Linux “unstable”.

112 Chapter 5. Syntactic extension

e Procedures are more involved: for each one procedures-to-define contains
its name as a Guile symbol, its formals as a Guile symbol list, and its body
as a Guile s-expression. Name and formals are easy enough to translate, but
for our state environment we need the body as an €y expression encoded in the
expression data structure we defined in Phase (74i); converting each body into
an expression is the main problem of this phase.

At this point we can better justify our rigidly constrained way of writing code
in Phase (i), in which we only used ¢y plus el:define: the s-expression-to-
expression translation we need to perform at this point is mon-macro expansion.
Since the translation has to be executed only once without the translation code
itself being part of the output, we can implement it in Scheme rather than in gg.
The procedure el:non-macro-expand, defined in a mutually-recursive fashion with
its helpers e0:non-macro-expand-sexpressions, e0:non-macro-expand-symbols
and e0:non-macro-expand-values, follows very closely our Definition 5.8.

The code is slightly less readable than the corresponding mathematical definition
just because of explicit representation conversions between Guile’s and €1’s data; for
example, the procedure whatever->guile-boolean converts an untyped €; object
into a Guile dynamically-typed boolean, and guile-sexpression->sexpression
converts a native Guile s-expression into our own representation, as per the previ-
ous phase. All such conversion operators, by themselves quite unremarkable, are
implemented in Scheme, in bootstrap/scheme/conversion.scm.

Our e0:non-macro-expand is also “unsafe” and in practice accepts a superset
of valid syntax encodings: we avoided safety checks in the code, for example ignor-
ing the s-cddr of (e0:join x . s) instead of verifying that it really is (). This
expansion unsafety is not a problem in practice at this point, since the code to be
translated has already been well tested on £¢’s implementation of Phase (%), us-
ing Guile’s interactive REPL (actually guile+whatever’s), and just a little care in
reading untyped data structure dumps (§3.3.1).

The real work is in the Scheme procedure set-metadata!, a zero-parameter pro-
cedure which consists of two loops, the first scanning the global binding list and
adding the definition to symbols, and the second doing the same for procedures
after s-expression conversion and non-macro expansion.

Even on our optimum machine, when using Guile 1.8, which is faster in this
phase, the computation of Phase (iv) takes about 15 seconds, compared to 0.2 sec-
onds for the previous phases combined; fortunately, unless there are recent changes
in core.e, we can in practice entirely skip this phase by execing (§3.3) over the
Phase (7) interpreter.

One problem remains: the globals and procedures we have defined up to this point
also remain in Guile’s state environments, and this state of things will persist up
until we remove the dependency on Guile. Re-defining some procedure directly
invoked from Guile, would lead to subtle problems, making the two definition sets

5.4. Syntactic extensions: the ¢; personality 113

inconsistent. We will simply avoid to override any €1 definition with an incompatible
one.

With the caveat above, and now having global and procedure definitions in place,
we can finally use el:eval.

5.4.2 TUnexec

At this stage it is finally possible to use unexec, which depended on reflective struc-
tures to dump a program. Our vague reference in §3.3.1 to the “surprisingly few”
data structures involved should be clear now: a simple way of obtaining a program
is to dump a pair containing:

e the symbol table, holding all global and procedure definitions and from which
all alive data in memory can be reached (§3.3.1);

e the main expression.

At exec time, it suffices to unmarshal the pair, define the symbol table, and run the
interpreter on the expression.

The ¢ implementation of unexec:unexec and unexec:exec is in bootstrap/scheme/
unexec.e; the same file also contains the €y implementation of marshalling and un-
marshalling.

5.4.3 Optimizations

In a preliminary version of €1, macros were not associated to procedures to be called,
but to expressions to be evaluated. The current definition has a cleaner interaction
with transforms, but if we ignore transforms the old solution was perfectly workable
as well: instead of passing parameters to a procedure, we evaluated an expression
in some environment, with the same effect.

With the old solution, macroexpansion returned correct results, but the sys-
tem’s incredible inefficiency led us to investigate the issue until we discovered a
perverse pattern: the complicated circular nature of the dependencies between el:
macroexpand, expression-expanders, e0:eval and its helpers made it difficult to
understand how, indirectly, e0:eval was interpreting calls to itself.

It is easy to see how, if adding one layer of interpretation worsens performance
by some constant factor k, we have that a stack of n interpreters has exponential
overhead k™; and given that symbolic interpreters easily cause order-of-magnitude
overheads, the slowdown was evident even for very small values of n.

For the first time in our programming experience we discovered that some code
had unbounded interpretation overhead. Despite being now unnecessary because
of the macroexpansion changes, we still find the problem and its solution quite
beautiful, and potentially instructive for others.

© 0 N O U ke W N =

= e
N o= O

[I N N

114 Chapter 5. Syntactic extension

Implementation Note 5.11 (The Hack) When evaluating a call to e0:eval,
the self-interpreter does not evaluate e0:eval’s body, but directly the given expres-
ston in the given local environment. o

The idea is simply to recognize as a particular case any call of a procedure named
e0:eval:

(el:define (eO:eval-call name actuals local)
(e0:if-in (whatever:eq? name (eO:value eO:eval)) (#f)
(e0:eval-non-eval-call name actuals local)
(e0:eval-eval-call actuals local)))

(el:define (eO:eval-eval-call actuals local)
(e0:1let (actual-values) (e0:eval-expressions actuals local)
(e0:if-in (whatever:eq? (list:length actual-values) (eO:value 2)) (#f)
(el:error (e0:value "e0:eval-eval-call: in-dimension mismatch"))
(e0:let (expression) (list:head actual-values)
(e0:1let (local) (list:head (list:tail actual-values))
(list:singleton (e0:eval expression local))))))) ; wrap as inner eval would

Subjectively, it could be said that The Hack changed the interpreter from being
comically slow to being still very slow, but at least usable.

Despite being an obvious idea, the following implementation aspect deserves promi-
nence because of its dramatic impact on performance:

Implementation Note 5.12 (interpreter in C) We re-implemented an g in-
terpreter in low-level C, using explicit stacks and no heap allocation, except implicitly
for building whatevers. The C implementation is a few hundreds of lines long, and
performs runtime dimension checks. The interpreter is available from €1 as the
primitive e0:fast-eval, and has the same interface of e0:eval. o

Replacing the ¢ self-interpreter with the C implementation led to a speedup of
around 200 for an exponential-time recursive implementation of Fibonacci’s func-
tion:

(el:define (fibo n)
(e0:if-in n (0 1)
n
(fixnum:+ (fibo (fixnum:- n (eO:value 2))))
(fibo (fixnum:1- n))))

The high speedup is not surprising, if we consider that the ¢y self-interpreter had
to run on top of Guile, itself an interpreter.

The “Interpreter in C” strategy subsumes The Hack: being written in a different
language than eg, the interpreter never accesses its own body, and interpreter calls
in the interpreted code are instead executed by a primitive, thus avoiding overhead
multiplication.

5.4. Syntactic extensions: the ¢; personality 115

Implementation Note 5.13 (exec/unexec in C) We re-implemented the mar-
shalling and un-marshalling procedures unexec:dump and unexec:undump by us-
ing primitives written in C. The C implementation consists of about 100 lines,
and adopts exactly the same data structures and algorithm as the corresponding
gg code. o

Again, the optimization of Implementation Node 5.13 has an order-of-magnitude
impact on performance: thanks to it, erec “quick-start” takes only a short fraction
of a second on optimum.

Re-implementing part of the functionality in C was an aid to development and
rapid testing, more than a definite commitment: after a good native compiler is
developed, the need for such optimizations will attenuate.

5.4.4 Sample extensions

The file bootstrap/scheme/toplevel-in-scheme. scm, run right after fill-reflective-
structures.scm, defines a few simple Scheme macros to let the user evaluate ;
forms within the Guile REPL: “(el:toplevel . s)” evaluates each element of the
s-list s as an &1 expression, which of course is macroexpanded and transformed be-
fore execution. “(el:trivial-define-macro m s)”, available both as a Scheme
macro and as an €1 macro, defines the macro named m (an s-symbol) as s (a generic
s-expression).

Armed with just this knowledge, the reader should be able to follow quite easily
bootstrap/scheme/epsilonl.scm, which contains around 2000 lines worth of £;
extensions.

We think that the power of syntactic abstraction is easy to appreciate now, by
looking at how fast language expressivity improves after each definition, compared
to the development work in phase (ii7) during which only procedural abstraction
was available.

This sequence of extensions, quite impressive in its accelerating rhythm, raises
the language from the clumsy beginnings of £y to a respectable power, with se-
quences, multi-way conditionals, short-circuit logical operators, Common Lisp-style
destructuring macros, variadic procedures, tuples, records, extensible sum-of-product
definitions, closures, imperative loops and futures.

Interestingly, only the three last extensions in the sequence above depend on a
transform; macros alone can already bring the language to a quite high level.

Most of our syntactic conventions are inspired to Scheme, and the form names
are indeed largely compatible, apart from the “el:” prefix.

The very beginning of bootstrap/scheme/epsilonl.scm deals with macros for core
go forms:

© 00 N O U e W N

o
[=}

116 Chapter 5. Syntactic extension

;55 These first crude versions do not perform error-checking, silently
;55 ignoring additional subforms at the end.
(el:trivial-define-macro e0:variable
(sexpression:inject-expression
(e0:variable* (sexpression:eject-symbol (sexpression:car arguments)))))
(el:trivial-define-macro e0:let
(sexpression:inject-expression
(e0:let* (sexpression:eject-symbols (sexpression:car arguments))
(el:macroexpand (sexpression:cadr arguments))
(el:macroexpand (sexpression:caddr arguments)))))

The code is simple, but it is questionable whether it really belongs in this file,
rather than in core.e. The reason why we defined such important features so late is
mostly pragmatic: such macro definitions would have been be much less comfortable
to write using only state:macro-set! without el:trivial-define-macro. For
similar reasons we defined quoting and quasiquoting in this file, rather than in
core.e.

The debate about where exactly the €1 “core” ends and “extensions” begin looks
futile anyway, and indeed the very notion of personality, possibly useful for humans
to identify a set of features, has no consequence for the implementation. The same
objection may be raised “at the other end”, about the CPS transformation and the
reason why we defined in its own source file instead of in the end of epsilonl.scm.
In the same somewhat arbitrary fashion, we proclaim that continuations do not be-
long in €1 but are part of another experimental personality based on 1. First-class
continuations provide another qualitative jump in expressivity, but our implemen-
tation is less mature and quite expensive in terms of performance, therefore less
appropriate as part of the general-purpose “library” to build personalities which &1
is meant to be.

In the following we will just add some quick considerations about the main ex-
tensions.

5.4.4.1 Quoting and quasiquoting

Quoting and quasiquoting, heavily relying on the type table (§5.4.1.3) so that support
for new new types can be added smoothly, are different from their Lisp homologous:
in €1 a quoted or quasiquoted s-expression yields an expression which will build that
s-expression when evaluated; for example ’1 macroexpands to a procedure call of
sexpression:inject-fixnum which, if evaluated, will build the s-expression (not
the unboxed fixnum) 1.

Despite this difference, we can easily adapt the standard algorithms for quasiquot-
ing?, which is convenient since nested quasiquoting is famously tricky to implement

25We followed Bawden’s updated proposal (different from his older one in [7, §B]), as quoted by
Kent Dybvig at http://wuw.r6rs.org/rérs-editors/2006-June/001376.html. This new version
was eventually adopted in [79].

http://www.r6rs.org/r6rs-editors/2006-June/001376.html

© 00 N O U kR W N =

=
(=}

o Ut W N

5.4. Syntactic extensions: the ¢; personality 117

correctly.

The non-homoiconicity of €1 forces us to think of the difference between s-expressions,
uninjected values and expressions, and costs us some injection and ejection oper-
ators in macros. The inconvenience in practice is tolerable, and we consider the
advantages of our syntactic extensions well worth this minor trouble.

5.4.4.2 Variadic procedure wrappers

All practical Lisps permit to define variadic procedures, which is to say procedures
with an arbitrary number of optional arguments. €9 and €1 do not, for reasons of
efficiency. Anyway we can recover the convenience of variadic calls by introducing
variadic macros, and using them to wrap procedures.

The following ¢; definitions extend binary operators with a neutral element to
make them accept any number of arguments:

(variadic:define-associative fixnum:+ fixnum:+ 0)
(variadic:define-right-deep fixnum:** fixnum:#** 1)

The macro-call expansions of variadic:define-associative and variadic:define-
associative gemerate more macro definitions, in this case for “fixnum:+” and
“fixnum:**” which for added convenience are also the names of the correspond-
ing procedures.

After the definition, using the debugging procedure meta:macroexpand we can
examine how variadic calls are always “eliminated” at macroexpansion time, yielding
efficient residual code:

guile> (meta:macroexpand ’(fixnum:+)) ;; no arguments: neutral element as a literal
072531

guile> (meta:macroexpand ’(fixnum:+ 7)) ;; one argument: no calls are needed

772532

guile> (meta:macroexpand ’(fixnum:+ 1 2)) ;; one sum

[call fixnum:+ 172533 272534]72535

guile> (meta:macroexpand ’(fixnum:+ 1 2 3 4)) ;; three sums, left-deep (currently faster)

[call fixnum:+ [call fixnum:+ [call fixnum:+ 172536 272537172538 372539]172540 472541172542
guile> (meta:macroexpand ’(fixnum:** 2 3 4 5)) ;; three calls, right-deep as requested

[call fixnum:** 272605 [call fixnum:#** 372606 [call fixnum:** 472607 572608]72609]72610172611

Since variadic syntax is so convenient, we use it also for of many other macros which
are not procedure wrappers:

guile> (meta:macroexpand ’(el:or))

072464

guile> (meta:macroexpand ’(el:or a))

ar2465

guile> (meta:macroexpand ’(el:or a b c))

[if ar2466 € {0} then [if braaer € {0} then cra46s else lraae9l72470 else 1raa71l72472

© 00 9 O U R W N =

e e
B W N = O

© 0 N O U W N =

e e e e e e
N o ok W N = O

118 Chapter 5. Syntactic extension

guile> (meta:macroexpand ’(el:and a b c))
[if ar2473 € {0} then 072474 else [if brasars € {0} then 072476 else cr2a77]l72478]72479

5.4.4.3 Sum-of-product types

Sum-of-product or sum types are a kind of variant records, introduced by ML and
popular in the functional programming community.

Even in e;’s untyped context, it is very convenient to automatically turn a sum
description into procedures for building, accessing and updating data, and for test-
ing the case of a given object.

As a classic example, let a list be either nil, or the cons of a head and a tail:

el> (sum:define my-list (nil) (cons head tail))
Defining the procedure my-list-nil...

Defining the procedure my-list-nil?...

Defining the procedure my-list-nil-explode...
Defining the procedure my-list-coms...

Defining the procedure my-list-cons-make-uninitialized...
Defining the procedure my-list-cons-explode...
Defining the procedure my-list-cons-get-head...
Defining the procedure my-list-cons-with-head...
Defining the procedure my-list-cons-set-head!...
Defining the procedure my-list-cons-get-tail...
Defining the procedure my-list-cons-with-tail...
Defining the procedure my-list-cons-set-taill!...
Defining the procedure my-list-cons?...

Our sum type definitions keep into account the number of cases which must be
represented as boxed, and do not generate tag fields unless needed. We derive the
representation in memory from the sum definition in a way similar to [5, §4.1].

el> (my-list-nil) ;; unboxed
0
el> (my-list-cons 10 (my-list-nil)) ;; just head and tail, no case tag
0x1b984d0[10 0]
el> (my-list-cons 10 (my-list-nil)) ;; make a *new* cons: different address
0x1be3b70[10 0]
el> (my-list-cons 10 20) ;; "ill-typed" as a list: the system doesn’t care
0x1998350[10 20]
el> (my-list-cons? (my-list-nil)) ;; is nil a cons? (No, it’s not)
0
el> (sum:define complex (cartesian real imaginary)
(polar angle radius)) ;; two boxed cases: case tag needed
A
el> (complex-cartesian 100 200) ;; first case: tag O
0x152c0c0[0 100 200]
e1> (complex-polar 100 200) ;; second case: tag 1
0x1502620[1 100 200]

© 00 N O U ke W N

e
= o

© 00 N O U ok W N =

— =
=

5.4. Syntactic extensions: the ¢; personality 119

We can now redefine €y expressions as an open sum-of-products, openness meaning
that more cases can be added later. This permits more flexibility, at the cost of a
slightly less efficient representation in the general case:

(sum:define-open e0:expression
(variable handle name)
(value handle content)
(bundle handle items)
(primitive handle name actuals)
(let handle bound-variables bound-expression body)
(call handle procedure-name actuals)
(call-indirect handle procedure-expression actuals)
(if-in handle discriminand values then-branch else-branch)
(fork handle procedure-name actuals)
(join handle future)))

The representation is compatible with the one used in core.e, and from now on it
will also be possible to add new expression cases, for user-defined expression forms.

5.4.4.4 Closure Conversion

The purpose of this extension is adding statically-scoped, higher-order anonymous
procedures to €1, implemented as closures.

6

Anonymous procedures require two?0 new syntax cases, lambda and call-closure:

(sum:extend-open e0:expression
(lambda handle formals body)
(call-closure handle closure-expression actuals))

(el:define (el:lambda* formals body) ;; make a lambda expression
(e0:expression-lambda (e0:fresh-handle) formals body))

;55 "Concrete syntax" for lambda, generating the new expression case. This is a

;53 variadic macro of one or more arguments: body-forms is bound to the argument s-cdr.

(el:define-macro (el:lambda formals . body-forms)
(sexpression:inject-expression
(el:lambda* (sexpression:eject-symbols formals)
(el:macroexpand ‘(el:begin ,@body-forms)))))

Our closures are flat and minimal [24, p. 132], consisting of a single buffer holding a
procedure name as its first element, followed by its zero or more nonlocal values; for
us, nonlocals are the variables locally-bound out of the lambda-expression, occurring
free in the lambda body, hence in particular not shadowed by the lambda formals. The
procedure referred by the closure takes the closure itself as a parameter, followed

26cal1-closure does not technically need to be added as a new syntactic case, as it would also
be definable as a macro; only the lambda case has an expansion which depends on its context.
However having both cases representable as expressions is useful for the CPS transform, and may
be a good idea in case we want to add type analyses in the future.

-

© 0 N O U ke W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

120 Chapter 5. Syntactic extension

by the ones explicitly mentioned as formals, and locally binds the nonlocal names
by loading their values off the closure.

For example (e0:1let (a) 57 (el:lambda (x) a)) will yield a closure of two
elements: a procedure name (automatically generated, two parameters: the closure
and x), and the only nonlocal value 57. The procedure body will contain an e0:let
block binding the name a to the second element of the buffer pointed by its closure
parameter.

Calling a closure is easy: given a closure and its actuals, we load the first element
referred by the closure and we perform an indirect call to it, passing as parameters
the closure itself followed by the actuals.

closure:closure-convert implements closure-conversion; it needs a procedure and
the set of locally-bound variables. The procedure is very simple, based on a multi-
way conditional el:cond which dispatches on the expression case®’. el:let*, not

to be confused with e0:1et*?®, is a block binding sequentially:

(el:define (closure:closure-convert e bounds)
(el:cond ((e0:expression-variable? e)

(e0:variablex (e0:expression-variable-get-name e)))

((e0:expression-bundle? e)

(e0:bundle* (closure:closure-convert-expressions

(e0:expression-bundle-get-items e) bounds)))

53 [...] other trivial cases [...]

((e0:expression-lambda? e) ;; Interesting case

(el:let* ((formals (eO:expression-lambda-get-formals e))
(nonlocals (set-as-list:subtraction bounds formals))
(old-body (e0:expression-lambda-get-body e))
(new-body (closure:closure-convert old-body

(set-as-list:union bounds formals)))

(used-nonlocals (set-as-list:intersection nonlocals

(e0:free-variables new-body))))
;5 closure:make* defines a global procedure, then returns an expression
;3 which builds a closure data structure including the global procedure name

(closure:make* used-nonlocals
(closure:variables* used-nonlocals)
formals
new-body)))
((e0:expression-call-closure? e) ;; The second interesting case

(el:let* ((closure-expression (e0:expression-call-closure-get-closure-expression e))

(actuals (eO:expression-call-closure-get-actuals e))
(transformed-closure-name (symbol:fresh)))

(e0:1let* (list:singleton transformed-closure-name)
(closure:closure-convert closure-expression bounds)
(e0:call-indirect*

27 pattern-matching over sum types can be implemented with macros, and in fact we did that
in a previous prototype: see §5.4.5.

28The naming convention is unfortunate in this case, but the sequential-binding name “let*”,
as distinct from parallel-binding “let”, is convenient and has been conventional in Lisp for decades.

29
30
31
32
33
34
35
36
37
38
39
40

o

© 00 N O U ok W N

ol W N

5.4. Syntactic extensions: the ¢; personality 121

(e0:primitivex (e0:value buffer:get)
(list:1ist (e0:variable* transformed-closure-name)
(e0:valuex 0)))
(list:cons (e0:variable* transformed-closure-name)
(closure:closure-convert-expressions actuals bounds))))))
(else
(el:error "unknown extended or invalid expression"))))
(el:define (closure:closure-convert-expressions es bounds)
(el:if (list:null? es)
list:nil
(list:cons (closure:closure-convert (list:head es) bounds)
(closure:closure-convert-expressions (list:tail es) bounds))))

closure:closure-convert is the basis of our procedure transforms:

(el:define (closure:closure-convert-expression-transform expression)
(closure:closure-convert expression set-as-list:empty))
(el:define (closure:closure-convert-procedure-transform name formals body)
(e0:bundle name
formals
(closure:closure-convert body formals)))

(transform:prepend-expression-transform! (e0:value closure:closure-convert-expression-transform))
(transform:prepend-procedure-transform! (eO:value closure:closure-convert-procedure-transform))

Now that we have installed the transform procedures, we can use closures:

el> (el:define q (el:let* ((a 1) (b 2) (c 3))
(el:lambda (x)
(fixnum:+ a b ¢ x))))
el> (el:call-closure q 4)
10

It should be remarked that closures are distinct from and incompatible with gq
procedures. Should we hide ordinary procedures from the user, and use closures
only?

We could: it is possible to introduce (trivial) closures for all existing procedures,
retroactively transform away all procedure calls into closure calls (and then into
indirect calls by closure-conversion) and finally change the cons-expander to generate
a closure call rather than a procedure call as its default case. This would make &1
similar to a “Lisp-1” [32]| by hiding from the user the existence of procedures which
are independent from closures.

Such a move would be perfectly reasonable in many high-level personalities, but
we reject it for e, for which we want to retain low-level control.

5.4.4.5 Futures

Our fork form in gg is very inconvenient to use, needing a procedure which must
be given parameters to evaluate in foreground, rather than just an expression (§2.2,
p. 22). But closures make it easy to define friendlier futures, by a simple macro:

© 00 N O U e W N

122 Chapter 5. Syntactic extension

(el:define (future:fork-procedure thread-name future-closure)
(el:call-closure future-closure))

;33 Build a future which will asynchronously call the given closure:
(el:define (future:asynchronously-call-closure closure)
(e0:fork future:fork-procedure closure))

(el:define-macro (el:future . forms) ;; friendly syntax: any number of forms in sequence

¢ (future:asynchronously-call-closure (el:lambda () ,@forms)))

5.4.4.6 First-class continuations

We implemented first-class continuations with a CPS transform (83, 5, 44, 46| on
expressions extended with a let/cc form (“CATCH” in [89]), with call/cc defined
as a macro over let/cc.

Our CPS transform is more tentative than the e; personality, and currently
resides in bootstrap/scheme/cps.scm, and the trivial driver bootstrap/scheme/
cps-repl.scm. Implemented in a very conventional style, it works but yields in-
efficient code and is inefficient at transformation time as well: in particular the
high number of local variables generated by CPS stresses closure-conversion and its
algorithm to compute the free variables of an expression, currently quadratic.

The generated code allocates closures at a very high rate; it can be optimized
and some improvements appear easy, but to obtain really efficient code we would
need escape analysis, so that code sure not to escape could be recognized and trans-
formed differently. Such global (or just “incremental”) analyses can be performed in
our model, by having a CPS transform return its provisional inefficient result but
save the original untransformed code, to be reconsidered later.

Bundles have been problematic, since CPS maps our e0:1let form, which ignores
excess items (§2.1.5, p. 20), into a procedure call, which does not ignore excess pa-
rameters; in order to respect our e0:1let semantics we had to relax some dynamic
checks in the g interpreter, and rely on a behavior which constitutes an error ac-
cording to the semantics. It is not clear whether it would be best to update the
semantics to ignore extra parameters (hence defining a non-error behavior in more
cases, which constrains implementations®?), or to forbid bundles altogether in con-

junction with CPS.

Continuations have been very useful to test and stress our transform system, since
a CPS transform is much less “well-behaved” than a closure-conversion transform:
CPS adds one more argument to every procedure, making transformed code fun-
damentally incompatible with its original version. When closures are not used,

29We only touched the C version, by trivially removing two conditionals, one for e0:call and the
other for e0:call-indirect. The same change can be easily replicated in the €¢ self-interpreter. In
such symbolic interpreters removing the check is trivial and actually slightly improves performance:
this will not be true in a compiled implementation.

5.4. Syntactic extensions: the ¢; personality 123

closure-conversion returns unchanged code, up to handles; but a (naive) CPS trans-
form fundamentally changes the expression structure even where no jump is per-
formed. Of course the CPS transform needs to be applied retroactively (§5.4.1.5,
p. 106).

We are not positive about traditional “full” continuations being pragmatically the
best foundation to base further extensions on; delimited continuations [33, 68, 27|
seem to provide some advantages, and we have experimented with them in early
prototypes; thanks to our open-ended design we may adopt them in the future.

5.4.5 Implementation status

The implementation is not mature, but it can be played with. We currently depend
on Guile to parse and print s-expressions, and our current implementation still lacks
a compiler.

Such limitations are temporary and incidental: in the time available we chose
to develop transforms, more innovative and interesting, rather than implementing
well-known algorithms once again. We do not envisage any particular difficulty, and
development will proceed during the following months.

Some older prototypes, unmaintained but available at http://ageinghacker.
net/epsilon-thesis-prototypes/, contain code which could possibly be worth
adapting and integrating into the current implementation:

e an s-expression frontend written in OCaml for an older prototype, supporting
the grammar of Figure §5.1; it works and contains a very powerful scanner
supporting a variant of Thompson [91] and Rabin-Scott Constructions [69]
over large character-sets;

e an incomplete compiler including liveness analysis and RTL generation;

e pattern-matching macros working on a different implementation of sum-of-
product types;

e a mostly complete CamlP4 printer, intended to automatically translate the
OCaml code into maintainable 1 code.

An official part of the GNU project, epsilon is free software, released under the
GNU GPL version 3 or later [31]. Its home page is http://www.gnu.org/software/
epsilon.

We manage the source code on a public bzr server at bzr://bzr.savannah.gnu.
org/epsilon/trunk [2015 note: switched from bzr to git in late 2013: see https:
//savannah.gnu.org/git/?group=epsilon|, and a public mailing list is available
for discussion. See https://savannah.gnu.org/projects/epsilon for more infor-
mation.

http://ageinghacker.net/epsilon-thesis-prototypes/
http://ageinghacker.net/epsilon-thesis-prototypes/
http://www.gnu.org/software/epsilon
http://www.gnu.org/software/epsilon
bzr://bzr.savannah.gnu.org/epsilon/trunk
bzr://bzr.savannah.gnu.org/epsilon/trunk
https://savannah.gnu.org/git/?group=epsilon
https://savannah.gnu.org/git/?group=epsilon
https://savannah.gnu.org/projects/epsilon

124 Chapter 5. Syntactic extension

5.5 Future work

Building a large body of extensions raises the issue of controlling their interaction.
Transform-based extensions in particular, relying as they do on the enumeration
of all expression forms, require knowledge of all the previously-added expression
forms. No solution to this problem is apparent. However, without promising a “silver
bullet” to language extension, we still maintain our approach of layered syntactic
forms to be much more suitable to extensibility than the traditional solution of a
large unstructured collection of language forms.

As an orthogonal problem, our current implementation does not currently keep
a map from expressions to original source locations (§1.3.4), which may complicate
debugging. Ad-hoc solutions involving an s-expression frontend keeping track of
source locations, then to be threaded through macros and transforms up to the final
generated code, seem perfectly feasible, with handles coming in handy; on the other
hand it is desirable to keep extension definitions as uncluttered as possible, ideally
by leaving the “current” location information always implicit at each stage, in a
monadic fashion. A clean solution to this problem seems well worth investigating.

5.6 Summary

Lisp is a powerful language, and its homoiconic syntax based on s-expressions makes
it easy to extend with macros.

We adopted a form of Lisp-style s-expressions as a data structure to represent
user syntax, but we keep it distinct from expressions: our macros map s-expressions
into expression objects; then, going beyond Lisp, expression objects can be ma-
nipulated by user-specified transform procedures, until all syntactic extensions are
“transformed away” and only ¢¢ forms remain.

We have shown in detail how €1, a low-level € personality useful as a basis to
build other extensions, is bootstrapped from eg temporarily leaning on Guile. Our
bootstrapping code also constitutes a complete definition of the macro and transform
systems.

We closed by showing some interesting language extensions in €1, as representa-
tive examples of our syntactic abstraction facilities.

CHAPTER 6

A parallel BiBOP garbage
collector

When a high-level program requiring garbage collection runs in parallel on a multi-
core machine, the memory subsystem easily becomes the bottleneck. For this reason
we implemented a parallel collector for e, actually starting back when the current
incarnation of the language was still taking shape, testing it on a toy Lisp imple-
mentation we originally wrote as a teaching aid.

The collector’s performance profile is meant to best match a mostly-functional
personality. It is relatively easy to interface to C systems, and by design is not
limited to €.

We call our system “epsilongc”. As for the language name, the initial “e” is
always written lowercase.

Contents
6.1 Motivation i e e e 125
6.2 The user view: kinds, sources and pumps 128
6.3 Implementation, 129
6.4 Status e e e e e e e e e e e e 141
6.5 SUummary i ittt e e e e e e e e e e e e 143

Our parallel collector is non-moving, based on a variant of the BiBOP organi-
zation. Building on the experience of Boehm’s work and revisiting some older ideas
in the light of current hardware performance trends, we propose a design leading
to compact data representation and some measurable speedups, particularly in the
context of functional programs.

This effort results in a clean architecture based on just a few data structures,
which lends itself to experimentation with alternative techniques.

6.1 Motivation

In recent years improvements in processor performance have been due more and
more to increased parallelism, while the trend of rising processor clock frequency
has dramatically slowed down. In contrast to what happens with instruction-level
parallelism, the task parallelism offered by modern multi-cores must be explicitly
exploited by the software, if any speedup is to be obtained [90].

126 Chapter 6. A parallel BiBOP garbage collector

As multi-core architectures support a shared-memory model® the techniques
presented here extend from the now ubiquitous desktop multi-core machines to
the older multi-socket SMPs, and to most recent medium-size parallel machines
containing several multi-core CPU dies.

The architecture we illustrate here is also suitable for sequential machine, but
the need for such a software is particularly stringent in a parallel context. In a
sense the rise of the number of CPUs amplifies the memory wall problem: the
memory bandwidth is a limited hardware resource which all cores have to share, and
raising the parallelism degree inevitably tightens up the bottleneck, even without
any synchronization.

6.1.1 Boehm'’s garbage collector

Boehm’s garbage collector [15, 12| is the natural point of comparison for our work
because of several design similarities, including the idea of (partially) conservative
pointer finding, and the use of Unix signals to interrupt mutators®. For this reason
it may be worth to quickly highlight the main objectives we have set forth for our
implementation, in order to better explain the need for our effort and to illustrate key
similarities and differences. Our objectives also more or less dictate several design
and implementation choices which we prefer to make explicit from the beginning.
First of all, C is clearly the language providing the best control on performance
for such a low level implementation where each memory access matters. A slightly
less obvious choice is determined by the typical usage of parallel systems, tending to
concentrate on bulk processing rather than interactive applications: for this reason
we consider bandwidth, and not latency, to be a priority; this choice excludes most
incremental schemes and favors a stop-the-world model where many threads can
mutate in parallel or collect in parallel, but without any time overlap between the
two phases — all of which is similar to Boehm’s solution. Since we are interested in
the allocation pattern of functional programs, consisting in a large number of small
objects, it is paramount to make a good use of the limited space in the primary and

!The architecture shown here does not generalize so well to NUMA machines, more suitable

as they are to a message-passing style where each task runs in its own addressing space; message-
passing is also interesting, as the same interfaces could scale up to parallel computation over the
network.
Moving away from thread parallelism to pure process parallelism (one heap per process) would es-
sentially eliminate the problem of parallel non-distributed garbage collection, but such a revolution
appears unlikely. Other organizations like NUMA machines composed by SMP nodes, or machines
where the NUMA effect is pronounced only between “distant” nodes, look more realistic and are
already being adopted by some current high-class machines [23]. For such a hybrid SMP-in-NUMA
model the techniques shown here apply at the SMP level, just in the same way as they would apply
to each single machine in a cluster of SMPs.

2Notwithstanding the outdated information at http://www.hpl.hp.com/ personal/Hans_
Boehm/gc/gcdescr.html Boehm’s collector now also employs signals to stop mutators on all
major platforms except Windows, where Unix signals are not supported but an analogous mech-
anism exists for suspending a thread from another thread. [13] mentions GNU/Linux, Solaris,
Irix and Tru64. The Windows implementation in win32_threads.c uses signal-like primitives like
SuspendThread ().

http://www.hpl.hp.com/
personal/Hans_Boehm/gc/gcdescr.html
personal/Hans_Boehm/gc/gcdescr.html

6.1. Motivation 127

secondary caches (henceforth simply L1 and L2), by tightly packing objects together:
we want to avoid padding space between heap objects and not to force alignment
constraints not specified by the user. Anyway, even if functional programs are our
first concern, we would like our collector to be also useful for (human-written) C
programs, which encourages us to adopt a non-moving strategy like mark-sweep and
to avoid safe-points and use conservative pointer finding for roots; on the other
hand there is no reason why other heap objects should not be traced exactly. The
collector API should be usable by humans, but not necessarily similar to malloc()
— an important difference with respect to Boehm’s collector.

6.1.2 High-level design

Most of our implementation ideas rely on a variant of the classic BIBOP strategy
[82, 26] which, despite its simplicity, has been exploited surprisingly little: the only
discussion of an actually implemented similar solution that we have found is in a
little-cited 1993 paper by E. Ulrich Kriegel, [45].

In the different context of today, we propose BiBOP as a good match for modern
multiprocessor architectures.

We cannot claim novelty for most ideas, some of which are variations of very old
implementation techniques, as it is understandable after fifty years® of research.

Nonetheless, we feel that our organization may have at least some aesthetic
value, in terms of its data structures and C interface.

Our main idea is that the BiBOP scheme is appropriate for reducing memory
pressure on machines with modern memory hierarchies; we describe this point by
introducing the concept of data density which we show to be at least one reason for
the good performance of our implementation.

6.1.3 The functional hypothesis

Functional programs tend to allocate many small objects, the great majority of
which have one of only a few possible “shapes”™; in practice, most heap objects will
be conses, nodes of balanced binary trees, or more generally components of inductive
data structures with fixed size and layout, often containing some constant attributes
which must be frequently inspected at runtime, such as the tags of our sum types
(§5.4.4.3). Depending on the programming style closures might also be allocated in
quantity; allocating other objects tends to be statistically much less frequent, hence
less critical for performance.

We define the above set of assumptions as the functional hypothesis: our system
is designed to run most efficiently when such hypothesis is verified, yet epsilongc
can and does work with any language, and may even be directly employed for user-
written C programs.

3We remark one last time how McCarthy also introduced garbage collection, in his wonderful
[51].

128 Chapter 6. A parallel BiBOP garbage collector

6.2 The user view: kinds, sources and pumps

At a very high level, any automatic memory management system serves to provide
an tllusion of infinity: an unlimited stream of objects created on demand, each
satisfying some specified requirements such as size and alignment.

Objects which are not useful any longer can be simply ignored: there is no need,
in general, for a user interface to the recycling system itself as the whole point of
garbage collection is to make object reusing inwvisible to the user, who just keeps
creating more objects as if the memory were unlimited.

The user-level API is built upon three main data structures: the kind, each
instance of which defines one particular set of requirements for a group of homoge-
neous objects, the source, which arranges for the creation of objects of one specified
kind, and the pump, providing a single mutator thread with objects from a given
source on demand, one object at a time.

6.2.1 Kinds

We define a kind as the specific representation of a group of homogeneous heap
objects. Each kind is characterized by a given object size, object alignment, a
tracer function specifying how to mark the pointers contained in an object given its
address, and particular metadata values: metadata include? an integer tag and a
pointer, sharing the same values for all the objects of the same kind. Given a pointer
to a heap object, mutators are permitted to inspect, but not modify, its metadata.

In general a kind should not be confused with a type: rather than a type it
identifies one case among the potentially many variants which, together, make up a
type. For example a cons kind could be defined, but not a list kind, which would
also comprise the empty list case, having of course a different representation — by
the way, reasonably unboxed, as in §5.4.4.3.

The tag could be usefully employed in a dynamically-typed language such as
Lisp, for example in order to test at runtime whether a given object is, effectively, a
cons. In a statically-typed language like ML the tag can encode the constructor of
tagged-sum objects. The pointer metadatum can be useful to refer any reflection-
related data not fitting in a single integer.

All the needed kinds are typically defined at initialization time, as global struc-
tures shared by all mutator threads.

6.2.2 Sources

From the user’s point of view a source can be seen as a global inexhaustible source
of objects of a given kind. In the typical case the user will define exactly one source
per kind at initialization time, as an object shared by all mutator threads; after
initialization mutator threads will only refer sources to create their pumps.

“Even if they currently comprise only tag and pointer, more metadata can be easily added in
the future if the need arises.

6.3. Implementation 129

6.2.3 Pumps

A pump is a thread-local data structure implementing but one user-level functional-
ity, the creation of an object.

Each mutator thread will create its own pumps referring the shared, global
sources, then use its pumps to obtain new objects. Pumps have to be explicitly
destroyed at thread exit time.

6.2.4 Kindless objects

The strategy outlined above — creating objects of some kind which has been defined
in advance — suffices the great majority of the objects ever created at runtime: for
example in Lisp most heap-allocated objects will be (s-)conses, and Prolog heaps
will mostly be made of terms. We call kinded all the objects created as shown above.

Some other heap-allocated objects do not fit so well in the picture as it is not
possible to foresee in advance their exact size: arrays and character strings come to
mind®. We provide more “traditional” allocation primitives for such kindless objects.

Notice how the kindless object API (see Figure 6.1) provides for less control:
vector elements can be either all potential pointers, or they can be guaranteed by
the user to include no pointers. There is not much control on metadata either:
all objects share the same® tag and metadatum pointer; a user requiring more ex-
pressive metadata has to explicitly encode them in the payload. For reasons of
general applicability and performance, we assume not to have boxedness tags avail-
able (§3.3.2.1).

6.2.5 Miscellaneous user functionalities:

Other primitives are provided to initialize and finalize the collector, to register and
unregister roots, to notify the memory system about new threads or exited threads,
to explicitly force a collection, and to temporarily disable collections and re-enable
them.

As all of this is canonical and not particularly interesting, we will not further
pursue such details.

6.3 Implementation

Despite their visual intuitiveness, the data structures above were designed primarily
for efficiency, and the actual role of each structure is not apparent to the user: in
particular the central data structure, the page, is completely hidden.

5Other slightly less obvious cases are procedure activation records, which some runtimes of
Scheme, Prolog and SML allocate on the heap; if the language supports dynamic code genera-
tion even code blocks (either machine language or bytecode) might be heap-allocated and garbage
collected.

5The actual values can be specified at initialization time, but nonetheless they must be the
same for all kindless objects; it is typically reasonable to choose some values not used for kinds, so
that at least kindless objects can be distinguished from kinded ones.

© 0 N O U s W N

W W W W W W wWw W WwwhhNNNDDNNNDNNDN = e e e e e e e e
© 0 N O U R WN = O © N0 U WN O © OO WN = O

130 Chapter 6. A parallel BiBOP garbage collector

/* A tracer is a pointer to a function taking a pointer as its parameter and
returning nothing: */
typedef void (*epsilongc_tracer_t) (epsilongc_word_t);

/* Create a kind: */

epsilongc_kind_t epsilongc_make_kind(const size_t object_size_in_words,
const epsilongc_unsigned_integer_t
pointers_per_object_in_the_worst_case,
const size_t object_alignment_in_words,
const epsilongc_metadatum_tag_t tag,
const epsilongc_metadatum_pointer_t pointer,
const epsilongc_tracer_t tracer);

/* Create a source from a kind: */
epsilongc_source_t epsilongc_make_source(epsilongc_kind_t k) ;

/* Initialize a (thread-local) pump from a source: */
void epsilongc_initialize_pump(epsilongc_pump_t pump,

epsilongc_source_t source);

/* Finalize a pump before exiting the thread: */
void epsilongc_finalize_pump(epsilongc_pump_t pump) ;

/* Allocate a kinded object from a thread-local pump: */
epsilongc_word_t epsilongc_allocate_from(epsilongc_pump_t pump);

/* Lookup metadata: */
epsilongc_tag_t epsilongc_object_to_tag(const epsilongc_word_t object);

epsilongc_metadatum_pointer_t
epsilongc_object_to_metadatum_pointer(const epsilongc_word_t object);

epsilongc_integer_t epsilongc_object_to_size_in_words(const epsilongc_word_t object);

/* Allocate kindless objects: */

epsilongc_word_t epsilongc_allocate_words_conservative(const epsilongc_integer_t size_in_words);

epsilongc_word_t epsilongc_allocate_words_leaf (const epsilongc_integer_t size_in_words);

epsilongc_word_t epsilongc_allocate_bytes_conservative(const epsilongc_integer_t size_in_bytes);

epsilongc_word_t epsilongc_allocate_bytes_leaf (const epsilongc_integer_t size_in_bytes);

Figure 6.1: epsilongc’s essential user-level API.
The source above is directly copied from header files, with only GCC function attributes (to
force inlining and such) removed and comments eliminated. Despite looking unconventional
the interface is not particularly complex, and in fact is conceived so that performance-
critical operations such as epsilongc_allocate_from() and metadata lookup functions
can be easily re-implemented in assembly, to be generated by a compiler as intrinsics.

6.3. Implementation 131

Pointers are essential in the implementation of any language requiring dynamic
memory allocation, and in order to make pointers easier to recognize at runtime in
the absence of boxedness tags and their dereference more efficient”, we restrict the
set of heap pointers considered valid to word-aligned pointers; one word is also the
minimum size of a heap object representable without space overhead, and all the
integers internally used in the implementation are of type intptr_t, so that the size
of all memory structures remains a multiple of a word size.

The description below will proceed from the bottom up: since many data struc-
tures and operations are usable with different collection strategies requiring little
or no modifications, we illustrate the various possible operations before our way of
combining them, in the spirit of separating policy from mechanism.

6.3.1 Kinded objects

We represent each kinded object as a buffer of words, with no header; the rationale
of this choice is discussed in more depth in §6.3.8, but the main idea is simply to
have long packed arrays of objects in memory, without any padding unless absolutely
necessary®.

6.3.2 BiBOP pages

All kinded objects are allocated from data structures called pages’, similar to
Kriegel’s “STSS cards” [45]: whenever a pump returns a pointer to a new object,
the resulting address will refer a word contained in a page.

Each page can only contains objects of one kind. For each kind any number of
pages, including zero, may exist at any given time.

All pages have the same size, which must be a power of two; the page size is also
equal to its alignment: the rightmost logaepsilongc_PAGE_SIZE_IN_BYTES bits of
a page pointer are always guaranteed to be zero.

A page is divided into page header, mark array and object slot array.

"On many RISC architectures pointers to misaligned objects may not be just a performance
concern: some processor families such as MIPS and Sparc simply raise an exception in response
to any attempt to dereference a non-word-aligned pointer. Others, such as the z86 family, execute
the misaligned dereference, but imposing a heavy execution time penalty.

We prefer to simply forbid such pointers for all architectures, which may improve performance
and helps to avoid the misidentification of many false pointers.

We also assume convertibility from integer to pointer and vice versa without loss of information:
even if not mandated by the C Standard (the type intptr_t itself is optional in [37]) such an
assumption is in practice true on all architectures.

8Padding must to introduced sometimes in order to respect the alignment constraints stated
by the user: for example the user might require a three-word structure to be aligned to two or four
words; in such cases there is no way to avoid wasting some space for each object.

9There is no a priori relation between BiBOP pages and operating system pages, whose sizes
may well be different: BiBOP pages will typically be at least a few times larger than operating
system pages, but still smaller than the L2 cache. In the following we always use the term page to
mean “BiBOP page”.

132 Chapter 6. A parallel BiBOP garbage collector

Page header The page header contains a copy of the kind metadata, which of
course are valid for all the objects in the page; the object referred by the metadatum
pointer, if any, is shared by all the pages of the same kind: only the pointer is copied.

Other information contained in the header includes kind-dependant data such
as the object size and effective size, the payload offset, and the number of object
slots in the page. All of this is computed once and for all when a kind is created,
and simply copied at page initialization time. The address of the first dead slot (see
below) is also held in the header.

Since the header has offset zero within the page, given a pointer to any kinded
object, even interior, the address of its page header can be trivially obtained by
bitwise anding the pointer and the page mask, defined as the bitwise negation of
epsilongc_PAGE_SIZE_IN_BYTES — 1. This allows mutators to access metadata at
runtime with an overhead of two to four assembly instructions, when needed; on
the other hand the negligible space overhead of storing metadata once per page
makes this solution completely acceptable even for languages which don’t make use
of them.

Mark array The mark array is placed right after the header, with no padding:
since the header size is a multiple of the word size, the mark array is guaranteed to
always begin at a word boundary.

The mark array stores liveness information for each object!? in the page: since
we currently need only one bit per object, the array could conceptually always be
implemented as a bit vector.

As marking is parallel, mark arrays are concurrently updated by several threads,
which requires some atomic memory accesses (see §6.3.6). On many machines byte
stores are always atomic, and even when suitable atomic instructions for bitwise
operations are provided working with a byte vector may be more efficient!*. On (hy-
pothetical) architectures where the compiler did not support the required intrinsics,
and where an atomic byte store were not provided, one could use a word vector. The
implementation allows the user to choose at configuration time among bit, byte or
word, bit being the default.

Alternatively, it is possible to enable out-of-page mark arrays at configuration
time, so that mark arrays are stored as separate malloc ()ed buffers; in this case the
mark array area in a page degenerates to a single pointer, and accessing the mark
array from a page requires one indirection. Our original rationale for implementing
this strategy was to avoid some cache conflict misses due to the fact that mark arrays

1074 is interesting to compare this with Boehm’s collector, which stores one element per object
word, thus making tracing simpler. We have chosen to slightly complicate the mapping from mark
array elements to objects instead, to speed up the critical operation of page sweeping, and in
general trading more computation for fewer memory accesses.

1[12], written in 2000, compares the solutions on several architectures, finding that the optimal
solution depends on the machine. According to our recent tests, the best strategy between bit
arrays and byte arrays remains machine-dependent.

6.3. Implementation 133

share the same alignment on all pages. As benchmarks showed that this is not a
problem in practice with modern multi-way set associative caches, this strategy has
not been pursued further by separating headers from slot arrays.

Object slot array The object slot array begins after the end of the mark array,
at the first word with the required alignment. Object slots contain the payload of
each page. At any given time each object slot may be either used or unused: when
used it contains an object payload; when unused, its first word contains a pointer
to the next unused object in the same page, or NULL in the case of the last unused
slot.

For each page unused slots make up an independent free-list where elements are
always ordered by address.

In order to avoid mistaking free list pointers in unused objects for pointers in used
objects during conservative pointer finding, free list pointers are stored in concealed
form by default'?.

Concealing consists in applying some function ¢ : A — A" to a free list pointer; it
is important for ¢ to be bijective, as concealing and then unconcealing (i.e. applying
c ! to) a pointer must preserve information.

c is trivially implemented as a C macro computing the successor function in
unsigned (wrap-around) arithmetic: since its domain consists of word-aligned point-
ers, the elements of its image are guaranteed to be misaligned, hence they cannot

1

be mistaken for pointers. The cost of applying either ¢ or ¢ is one assembly

instruction requiring no memory accesses'3.

Depending on the kind, some unused space may be present between the end of
the mark array and the beginning of the slot array, and at the end of the page; in
either case these two padding spaces are strictly smaller than the object effective

size.

The global page table The global page table serves to recognize which part of
the address space is being used for the garbage-collected heap; such information is
important for avoiding dereferencing false pointers when doing conservative pointer
finding.
Moreover, the collector needs to be able to recognize whether a heap pointer refers
a kinded object in a page slot array or a large object — no particular provision
is needed for kindless small objects, but we defer the justification of this fact to
§6.3.5. Since we support interior pointers for large objects, it must also be possible
to efficiently map an arbitrary (word-aligned) interior pointer to an initial pointer.
We call candidate pointer a word which is suspected to be a (possibly interior)
object pointer at marking time, and candidate page the address of the hypothetical

12Fyee list pointer concealing can be disabled at configuration time.
13 Assuming instructions such as either inc/dec or add/sub with a small immediate parameter;
again, all modern machines satisfy this condition.

134 Chapter 6. A parallel BiBOP garbage collector

page which would contain the object referred by a candidate pointer. Of course
candidate pages have alignment logoepsilongc_PAGE_SIZE_IN_BYTES.

At an abstract level, the table implements a function f mapping a non-NULL candi-
date page p to an element s of the disjoint sum

Sort = {kinded} + {nonheap} + LargeObjects

If f: p — kinded then the candidate page p is actually a page; if instead
f : p — nonheap then p is a pointer referring some object out of the garbage-
collected heap, or a false pointer. Otherwise f : p — [, where [is the address of the
beginning of the large object containing the word pointed by p.

Given a value for p stored as a key, a simple encoding allows us to represent any
element of Sort in a single word: NULL represents nonheap, s = p stands for kinded,
and any other value of s is interpreted as a large object pointer.

The table is implemented as a simple resizable chained hash where the first

14 as first

element of each bucket is stored within the bucket pointer array itsel
described in [97]; the hash function is modulo.

One essential optimization at mark time consists in not consulting the page at all,
which would be comparatively expensive, for NULL or misaligned candidate pointers.

It is interesting to notice how all updates to the global page table occur at
mutation time, when creating or destroying!'® pages and large objects; unfortunately
such updates require critical sections which, short as they are, may nonetheless limit
scalability. By contrast at collection time the table is only read, which allows us to

completely avoid critical sections for table access during that stage.

6.3.2.1 Page creation

Creating a page involves allocating space from the C heap, filling the header fields,
initializing the mark and object slot arrays and registering the page in global struc-
tures.

Because of the alignment requirements we currently allocate pages with posix_

)16.

memalign()'®; as this may involve a kernel call and/or synchronization in the C

library, such operation tends to be both expensive and hard to parallelize.

This optimization is the reason why we don’t include NULL in the domain of f: we use the
value NULL as a key in a hash table element out of the bucket to mean that the element is currently
unused.

15See §6.3.6 for the reason why pages must be destroyed at mutation rather than collection time.

16 An interesting alternative to explore would involve using mmap () to allocate a group of pages;
for some (non-GNU) implementations of posix_memalign(), the mmap() solution might incur a
significantly lower space overhead, at the cost of always involving the kernel in page creation.
Using mmap () could in fact make deallocation more portable, as free()ing buffers allocated with
posix_memalign() is only permitted on GNU systems, as far as we know ([48], “Allocating Aligned
Memory Blocks”, currently at subsection 3.2.2.7).

However the mmap() solution has some issues of its own: mmap() only guarantees sysconf (_SC_
PAGESIZE) alignment, hence pages could only be reasonably mmapped in large groups, with some

6.3. Implementation 135

Filling the header involves little more than copying some fields from the kind
data structure, which is directly referred by the source, and making the free-list
head point to the payload beginning. Nothing of this is performance-critical.

The mark array has to be zeroed at creation, with a memset () call. This should
be relatively efficient, just involving some evictions from L1 — however having the
mark array in L1 at page creation time does not buy us anything, as mark arrays
are only touched during collection. If out-of-page mark arrays are enabled then we
should add a malloc() call to the cost.

Building the free list involves some memory traffic, as all objects need to be

touched. Unless objects have effective size larger than a cache line the complete ob-
ject slot array has to be brought into cache. Even if this phase by itself is expensive,
it may work like a sort of prefetching: if the page is used soon, all of it will already
be loaded at least in the L2 cache.
We define backward free list building'” the strategy of building the free list starting
from the last slot which will be used for allocation. This solution has locality ad-
vantages in case of large page size, under the assumption that a just-created page
will be used soon for allocating: if the page size is larger than the L1 data cache,
building the free list backwards makes it very likely that the memory touched first
while allocating will be already in L1; the rest of the page will be still in L2. It is
possible to choose between forward and backward free list building at configuration
time.

The final step is registering the page in the page table, which requires a critical
section on the global mutex, plus a malloc() call within the critical section in case
of hash collision.

All of this makes page creation a relatively expensive and non-scalable operation.

6.3.2.2 Page sweeping

Sweeping can be performed on an individual page without need for synchronization
or kernel calls. It simply involves scanning the mark array and, for each i-th element,
either clearing the corresponding element if array[i] is one, or making the i-th
object slot unused by re-adding it to the free-list if array[i] is zero. Since the mark
array is examined in order (either forward or backward, as per the free-list building

space overhead at the beginning and the end. Making epsilongc_PAGE_SIZE_IN_BYTES equal to
sysconf (_SC_PAGESIZE) would solve the space overhead problem, but at the price of forcing pages
to be unacceptably small. unmmapping space from the middle of a mmapped buffer is supported, but
deallocation of single pages would still be a problem unless epsilongc_PAGE_SIZE_IN_BYTES were
chosen to be a multiple of sysconf (_SC_PAGESIZE). Re-mmapping a previously unmmapped part of
a buffer is typically supported, even if such behavior is not mandated by POSIX. In addition we
would need some data structure to keep track of which pages in a large buffer are mmapped at any
given time.

Anyway, despite all the complexity, such an idea seems worthy of some exploration.

"The actual direction of free list building, from higher addresses down to lower ones or from
lower addresses up to higher ones, has no effect on performance as long as it is the opposite of
the allocation direction: note in particular how automatic hardware prefetching works in either
direction on modern processors ([23], section 3.3.2, “Single Threaded Sequential Access”).

136 Chapter 6. A parallel BiBOP garbage collector

direction), free list elements are kept ordered by address in the list. All the words
of dead objects other than the first one are overwritten!®, to prevent future false
pointers referring the slot to keep alive the objects which were referred by the now
dead slot.

Memory access patterns in sweeping are similar to the ones in mark array initial-
ization and free-list construction; in particular a just-swept page will likely remain
cached at least in L2 — and the next lines to be used will be in L1, if backward free
list building is enabled.

6.3.2.3 Page refurbishing

It is possible to re-use an empty page of some kind for objects of another kind: such
operation is called refurbishing, and involves reconstructing the header, mark array
and free list.

Refurbishing has essentially the same overhead as sweeping, and the cache effects
of the two operations are also comparable: allocations from a just-refurbished page
on the same thread which performed the refurbishing is efficient as all the page cache
lines will still be in L1 and L2.

6.3.2.4 Page destruction

Destroying a page involves its deallocation and removal from the global page ta-
ble: such operations are expensive and non-scalable, involving synchronization and
possibly kernel calls.

6.3.3 Sources

From the implementation point of view a source is quite a trivial structure, serving
as repository of pages. FEach source simply contains two lists of pages, the full pages
list and the non-full pages list, plus a mutex for synchronizing access to such lists.

6.3.4 Pumps

Pumps are performance-critical structures whose purpose at the implementation
level consists in caching frequently accessed data about the objects to allocate.
Such criticality is evident from the API in Figure 6.1, showing how existing pump
data structures are initialized rather than dynamically allocated, in an effort to save
a pointer indirection at runtime: pumps are conceived to be declared in programs
as __thread variables of type struct epsilongc_pump, rather than as pointers.
At any given moment a pump may conceptually “contain” a page reserved to the
allocating thread, or no page; of course at the implementation level such an inclusion

8Fach word is overwritten with a configuration-dependent value impossible to mistake for a
pointer: either the Oxdead constant (which is easy to recognize for humans) if the collector is
configured in debug mode, or otherwise simply 0 (which might lead to a slightly more efficient
implementation on some architectures, possibly saving a load immediate instruction). Overwriting
dead slots can also be completely disabled at configuration time.

6.3. Implementation 137

is represented with a page pointer field. Its other relevant field is the current head
of the page free list, again kept in the pump rather than in the contained page in
order to avoid a pointer indirection at allocation time: in fact the free-list head field
of the page is, counter-intuitively, not updated at each allocation. The free-list head
field of the pump is set to NULL when the pump contains no page.

6.3.4.1 The allocation function

Despite the allocation being the only user-level operation on a pump, such a func-
tionality is very performance-critical. Allocating from a given pump involves un-
concealing the free-list field into a temporary variable, if non-NULL dereferencing it,
setting the free-list head to the just loaded value and finally returning the tempo-
rary. This shorter and far more common execution path is carefully optimized and
costs about ten assembly instructions, with no taken'® jumps; the other execution
path is taken in case of page change time, when a page is filled and another one
must be acquired from the relevant pool, or at the first allocation for a pump with
no page: it involves synchronization with the pool mutex and access to its lists. If
no non-full pages are available, a page is taken from a global empty pages list (at the
cost of one further synchronization) and refurbished if needed. If no empty pages
are available, an heuristic is employed to decide whether to create a new page, or
to trigger a collection. Page change is also the taken as the occasion for destroying
empty pages, if an heuristic says that there are more than enough: the rationale
here is to avoid destroying pages too frequently, since they might be needed again
and both creation and destruction are expensive.

Repeatedly allocating from a page which was recently swept by the same thread
and which contains many unused slots should be cache-friendly: sweeping works like
a prefetch phase to load the page payload into the L1 or L2 cache, and even without
on-demand sweep the hardware automatic prefetch may be activated when there is
much free space on the page, as consecutive addresses are generated. Using pumps
automatically guarantees that a page is only used for allocation by one CPU at a
time, which avoids cache ping-pong.

6.3.5 Kindless and large objects

The data structures and primitives shown above provide no hints about the imple-
mentation of kindless objects, yet the idea is quite simple. A set of implicit kinds,
sources and per-thread pumps®®, of user-definable sizes, are automatically defined:
in this sense most kindless objects are just kinded objects “in disguise”, only slightly
less efficient because of the need for mapping an object size to a pump at runtime,
and because of the possibility of internal fragmentation: not all possible sizes will
be realistically provided, so the allocation of an object of a given size might be

191t is worth to provide GCC with an optimization hint via __builtin_expect().
Tmplicit pumps are created at thread registration and destroyed at thread un-registration
time.

138 Chapter 6. A parallel BiBOP garbage collector

satisfied by using a larger buffer. For each size two kinds are provided, one with a
fully conservative tracer, and another one with a leaf tracer (called “atomic” in the
jargon of Boehm’s collector).

It is easy to see how the solution above is not completely general, as it cannot
satisfy allocation requests for objects larger than a page or even just larger than
the maximum implicit kind size which has been fixed by the user. A different
mechanism is provided for large objects, which are simply allocated one by one
with malloc () and destroyed with free(). Their implementation is simple-minded
and quite inefficient in both space and time, which given the functional hypothesis
should hopefully not be serious. Of course the user-level API completely hides the
difference between implicitly-kinded and large objects.

6.3.6 Garbage collection

A collection is initiated by one mutator, which stops all the other mutators with a
signal. This choice has the advantage of allowing a simple user API, but significantly
complicates the collector implementation: any function not reentrant with respect
to signals, notably including malloc() and free(), can not be used at collection
time: this is the reason why empty pages have to be destroyed at mutation rather
than collection time.

The collection phase may internally proceed in two different orders according to
a configuration option: if on-demand sweeping is enabled, as per the default, the
three sub-phases are non-deferred sweeping, root marking and marking, otherwise
they are root marking, marking and sweeping. In any case it is central to maintain
the invariant according to which a complete heap marking is followed by a complete
sweeping, before the next marking can begin.

On-demand sweeping consists in sweeping a page during mutation at page change
time, just before allocation from it begins: such a choice is more cache-friendly than
the traditional stop-the-world sweep, but it may leave some pages still to be swept
when a collection begins: the non-deferred sweeping sub-phase, typically very short,
serves to sweep such remaining pages. Non-deferred sweeping and stop-the-world
sweeping share the exact same implementation.

After collection all mutators are restarted with a second signal.

Root marking Root marking is very simple, and currently sequential. Just like
Boehm'’s collector in most of its configurations, it uses setjmp() for finding register
roots in a portable way.

Marking Given the atomicity of mark array stores parallel marking can easily
proceed in parallel without synchronization, if we accept the possibility of some
(statistically unlikely) duplicate work; our implementation is quite canonical and
closely follows Boehm’s one [14], with load balancing in the style of Taura and
Yonezawa [28]. It should be noted that the BiBOP organization does not affect
marking in any significant way.

6.3. Implementation 139

Sweeping Parallel sweeping is even simpler, with pages dictating the natural gran-
ularity for the operation of each thread: pages are simply taken from a list, swept
and put back into another list.

6.3.7 Synchronization

One interesting and possibly original detail involves our locking style: in order
to prevent a collection from starting during a critical section at mutation time, a
global read-write lock is locked for reading at mutation, before acquiring the relevant
mutex: the collection triggering function, before sending the signal, locks the same
read-write lock for writing.

6.3.8 Data density

The system internally measures object size and alignment in machine words, and
one word is the minimum size of a kinded object which can be represented without
padding, in absence of alignment constraints specified by the user; with an alignment
greater than one word, it becomes necessary in some cases to add some padding space
right after the object payload; we call the effective size of an object the sum of its
size and its alignment padding.

Given a kind k of objects with alignment a; and size s, we define the effective
size e needed to store each object, and the corresponding data density dj, the
number of objects representable per word, as:

S 1
ek%ak'[aﬂ dkﬁg

The definitions above intentionally disregard all the sources of memory over-
head out of object slot arrays, including mark arrays and all garbage collector data
structures, the rationale being that density is not meant as a measure of memory
occupation, but rather as an index of the number of objects fitting in a cache line:
as mark arrays and other collector data structures are mostly accessed at different
times from the objects per se and reside in different cache lines, optimizing data
density maximizes the amount of useful information stored in the physically limited
cache space at mutation time.

Data density may be reasonably defined in the same way independently from the
garbage collecting strategy, and indeed it is of some interest to compare the values
of di in different memory management systems for two kinds which are widely
employed in functional programs, the cons (two words) and the non-empty node of
an Red-Black binary tree of one given color?! (three words: left, datum and right).
Neither kind has alignment requirements, hence acons = Gnoge = 1.

Several systems such as the GNU libc malloc () facility 48], all the other alloca-
tors derived from Doug Lea’s malloc() and — even more interestingly — Boehm’s

21The example trivially generalizes to AVL trees, the idea being simply that the balance-related
information can usefully be represented as meta-data rather than data.

140 Chapter 6. A parallel BiBOP garbage collector

collector [15], allocate all buffers at double-word-aligned addresses and may also
add some internal status information to each buffer; metadata, when needed, must
be represented as part of each object, adding to s;. Instead many other systems,
including just for example OCaml, do not force any alignment but always add one
header word per object??
part of sg.

, sufficient to include a short tag, which again we consider

If metadata are accessed at runtime, as it is the case with dynamically-typed
languages, with Boehm'’s collector we have d.ons = dpode = %. When metadata are
not needed Boehm has optimal density in the cons case with d.ons = %, but again
Anode = i. In OCaml, with or without metadata, deons = % and dode = i.

Independently of the need for metadata at runtime our model allows us to reach
optimal density for both kinds, with deons = % and d,ode = %

The data density of a particular representation seems likely to play a role in the
overall efficiency of the system, even ignoring the cost of allocation and collection
and considering only object accesses; anyway further empirical evidence will be
needed to confirm this supposition for real world programs.

6.3.9 Closures

Functional programs written in certain styles?® or CPS-transformed (§5.4.4.6) create
a considerable number of short-lived closures at runtime. At a first look such a
scenario does not seem to respect the functional hypothesis, as in principle closures
can have many different shapes, depending on the number of non-locals captured
in the environment, and on the fact that each non-local can be a pointer or a non-
pointer.

Even if allocating all closures as kindless objects would work, the overhead of such
a simple-minded solution is in fact easy to avoid.

First of all it should be observed that the great majority of functions need either
zero or one variable in their non-local environment; it may be worth to add specific
kinds for such common cases, and possibly also for the most performance-critical
functions with larger non-local environments, when it is possible to recognize them
with compile-time heuristics or after profiling.

The number of needed kinds can be reduced by establishing a convention for ordering
non-locals in their environment arrays, according to whether they are pointers or
not: either first all pointers then all non-pointers, or vice-versa.

The idea of normalizing the representation is a sort of pattern in the BiBOP
scheme, generalizable to many other cases when using statically typed languages
or € personalities: there is no reason why two cases of different concrete types,
possibly completely unconnected at a semantic label but with the same effective

228ome systems add even more than one header word per object. Sun’s JDK, MMTk [11] and
Microsoft’s CLR, for example, use two words.

28And in particular when using simple compilers or interpreters: higher-order code can be
simplified with flow analysis.

6.4. Status 141

size and number of potential pointer fields, cannot be represented in such a way to
share the same kind.

6.3.10 Lazy and object-oriented personalities

Lazy languages require a slightly more sophisticated data representation than call-
by-value languages, as in a realistic implementation it must be possible to destruc-
tively update a still-unevaluated thunk, and replace it with the result at the end of
its computation.

Unsurprisingly, epsilongc does not provide any support for changing the kind of
an existing object while maintaining its identity; that could be possible at collection
time in a moving scheme, but not with mark-sweep?*.

Any standard solution already employed by the collectors for lazy languages
such as Haskell can be adopted: unfortunately some of the cleanness of the BiBOP
model is lost in this case, as dataneeds to be tagged with at least a boolean (two in
a concurrent environment: objects may be thunks, in flux or ready) recording the
evaluation state of an object; any unused bit sequence in the payload or even the
mark array entry of the object can do the job.

Accessing possibly still-to-be-evaluated objects will often require a conditional at
runtime, just like in conventional implementations of lazy languages; after an object
is known to be ready, BIBOP metadata can be accessed just as for eager languages.

Such a solution also necessarily requires some form of synchronization if the

mutator threads are more than one: of course it is always possible to add a synchro-
nization word in the payload, if needed.
From this point of view the situation is not different for “managed” languages such
as Java, where each object contains a header word reserved for that purpose; yet we
believe that not forcing such an expensive representation for all objects is prefer-
able in the general case; the user can always implement some additional logic where
needed, out of the memory management system per se.

For most runtimes there is no reason for keeping one mutex per object, and even
lazy languages such as Haskell normally employ strictness analysis to statically
recognize many cases in which laziness is not needed, and more efficient traditional
representations can be safely used.

The work about Prolific Types |77] is relevant for object-oriented languages.

6.4 Status

epsilongc’s implementation totals around 5000 lines of heavily commented C code,

2In a moving BiBOP collector otherwise similar to epsilongc it might be reasonable to split
each kind into a evaluated kind, plus a thunk-or-evaluated one: all the alive evaluated objects
of a thunk-or-evaluated kind would be re-kinded at collection time. This idea does not look
particularly hard to implement, but keeping the collector both efficient and language-agnostic
might be challenging. Moving-time hooks definable by the user would solve the problem, at some
cost; the overhead could be reduced by allowing to re-compile the hooks as part of the collector,
to be called as inline functions, like described for example in [95].

142 Chapter 6. A parallel BiBOP garbage collector

quite easy to understand for being such a low-level concurrent piece of code not
sparing C macros, #ifdefs, GCC function attributes and intrinsics in order to be
support Autoconf options and be as general and efficient as possible.

In preliminary micro-benchmarks (http://ageinghacker.net/publications/
gc-draft.pdf) epsilongc appears to perform better than Boehm’s collector; any-
way no realistic parallel workload has been measured, and we feel that our conclu-
sions can only be tentative in this respect.

Our collector is not currently used by e: since the current implementation of ¢
still relies on Guile for the s-expression frontend (§5.4.5) it also shares its memory
management system, which has been a custom sequential mark-sweep garbage col-
lector up to Guile 1.8.x, then replaced with Boehm'’s collector in the new series Guile
2.0.x. We expect to integrate epsilongc into € as soon as we drop the dependency
on Guile, or when we write a compiler — which can be done even while keeping the
interactive system linked with Guile without re-implementing the frontend, at the
cost of not having access to the frontend from compiled code.

Support for mutexes and other imperative synchronization features is trivial to
add to €’s implementation with C primitives.

Exploiting the BiBOP organization from €; does not appear particularly problem-
atic. It will be interesting to test the benefits of the BiBOP strategy in code strongly
based on sum-of-products (8§5.4.4.3), such as in complex transforms; the necessary
changes in the representation of sum tags do not seem very involved.

epsilongc will work as it is with €, but in the longer term we plan to turn
the current mark-sweep collector into the old generation of a generational system,
where the younger generation is copying; this will be particularly relevant for the
allocation patterns of CPS code, which tends to produce short-lived objects at a
high rate. Implementing a collector which can be interrupted at any time by signals
has been a fun and instructive challenge, but in the future we plan to seize the
opportunity of coping with a moving collector in the young generation to introduce
safe points. epsilongc also needs a couple of new functionalities, the most urgent
of which are support for finalization and weak pointers.

The epsilongc sources have been committed to the main e repository (see https://

25

savannah.gnu.org/bzr/?group=epsilon)®’, as an independent subdirectory with

its own build system.

Like the rest of the system it is free software, released under the GNU GPL
version 3 or later [31].

259015 note: the GNU epsilon repository no longer uses bzr, and is now managed with git: see
§5.4.5.

http://ageinghacker.net/publications/gc-draft.pdf
http://ageinghacker.net/publications/gc-draft.pdf
https://savannah.gnu.org/bzr/?group=epsilon
https://savannah.gnu.org/bzr/?group=epsilon

6.5. Summary 143

6.5 Summary

We implemented epsilongc, a parallel mark-sweep conservative-pointer-finding garbage
collector for multicore machines. Conceived for ¢, it is general enough to be used
by other systems as well.

In order to exploit the memory hierarchies of modern machines, we pack data
in a dense way without prefixing every object with a header, segregating objects by
memory representation in a BiIBOP organization.

This solution is most appropriate for functional personalities, in which most
objects belong to one of a small set of kinds.

Conclusion

We formally specified and implemented a practical extensible programming language
based on a very small first-order imperative core, plus powerful syntactic abstraction
features: Lisp-style macros map user s-expression syntax into expression data struc-
tures; user-specified transforms permit arbitrary code-to-code transformation, with
the intent of supporting extended syntactic features which are gradually “trans-
formed away” into core forms. This open-ended approach enables research and
experimentation.

As examples of the power of our extension mechanisms, we used transforms to
implement higher-order lexically-scoped anonymous procedures and first-class con-
tinuations, on top of a core language only supporting named global procedures.

The language is very expressive and permits reflection and self-modification; it is
possible to update the global state of the system by global modifications, possibly
up until a state where the program is “static”, convenient for analysis and compilable
with traditional techniques.

We formally developed an analysis for static programs, and proved a soundness
property about it with respect to the dynamic semantics. We argue that such formal
reasoning is only possible thanks to the size and simplicity of the core language.

The state of the system can be saved and restored with unexec and exec facilities
based on marshalling.

The language supports asynchronous threads and is suitable for modern multi-
core machines. We implemented a parallel garbage collector, not yet integrated in
the system, to limit garbage collection bottlenecks.

The implementation is not mature yet, but can be played with. The bulk of
the system is written in itself, using C for the runtime, and Guile as a temporary
dependency for bootstrapping.

An official part of the GNU project, epsilon is free software, released under the
GNU GPL version 3 or later [31]. Its home page is http://www.gnu.org/software/
epsilon.

The source code is managed on a public bzr server?6

, and a public mailing list
is available for discussion: see https://savannah.gnu.org/projects/epsilon for

more information.

269015 note: the repository switched from bzr to git in late 2013: see §5.4.5.

http://www.gnu.org/software/epsilon
http://www.gnu.org/software/epsilon
https://savannah.gnu.org/projects/epsilon

1]

2]

13]

[4]

15]

[6]

7]

8]

19]

[10]

[11]

Bibliography

Harold Abelson, Norman Adams, David Bartley, Gary Brooks, William
Clinger, Dan Friedman, Robert Halstead, Chris Hanson, Chris Haynes, Eugene
Kohlbecker, Don Oxley, Kent Pitman, Jonathan Rees, Bill Rozas, Gerald Jay
Sussman, and Mitchell Wand. The Revised Revised Report on Scheme or An
UnCommon Lisp. Al Memo 848, MIT, 1985.

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Inter-
pretation of Computer Programs. MIT Press, second edition, 1996. 6

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
principles, techniques, and tools. Pearson/Addison Wesley, Boston, MA, USA,
second edition, 2007. 78

ANSI. American National Standard for information technology: programming
language — Common LISP: ANSI X8.226-199/. American National Standards
Institute, 1996. Available in a hyperlinked version as The Common Lisp Hy-
perSpec at http://www.lispworks.com/documentation/HyperSpec/Front. 8,
19, 73, 81, 95, 101

Andrew W. Appel. Compiling with Continuations. Cambridge Univ. Press,
1991. 10, 53, 118, 122

Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998. 11

Alan Bawden. Quasiquotation in Lisp. In Partial Evaluation and Program
Manipulation, pages 4-12, 1999. 116

Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML
to Java bytecodes. SIGPLAN Not., 34:129-140, September 1998. 19

Gérard Berry and Laurent Cosserat. The FEsterel synchronous programming
language and its mathematical semantics. In S. D. Brookes, A. W. Roscoe, and
G. Winskel, editors, Seminar on Concurrency, volume 197 of Lecture Notes in
Computer Science, pages 389-448. Springer-Verlag, 1984. 3

Richard J. Bird. Introduction to Functional Programming using Haskell.
Prentice-Hall Series in Computer Science. Prentice-Hall Europe, London, UK,
second edition, 1998. 5

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and
realities: the performance impact of garbage collection. In Proceedings of the
International Conference on Measurements and Modeling of Computer Systems,
SIGMETRICS04, Performance FEvaluation Review (PER), pages 25-36, New
York, NY, USA, June 2004. ACM SIGMETRICS/IFIP. 140

http://www.lispworks.com/documentation/HyperSpec/Front

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

148 Bibliography

Hans-Juergen Boehm. Fast multiprocessor memory allocation and garbage col-
lection. Technical Report HPL-2000-165, Hewlett Packard Laboratories, De-
cember 21 2000. Available at http://www.hpl.hp.com/techreports/2000/
HPL-2000-165.html. 126, 132

Hans-Juergen Boehm. “Re: Unregistering the main thread”. Thread on
Boehm’s GC public mailing list, September 2008.
http://www.hpl.hp.com/hosted/linux/mail-archives/gc/
2008-September/002334.html. 126

Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel
garbage collection. In PLDI pages 157-164, 1991. 138

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software — Practice and Fxperience, September 1988. 126, 140

Maximilian C. Bolingbroke and Simon L. Peyton Jones. Types are calling
conventions. In Proceedings of the 2nd ACM SIGPLAN symposium on Haskell,
Haskell '09, pages 1-12, New York, NY, USA, 2009. ACM. 19

Frédéric Boussinot and Robert de Simone. The SL synchronous language. IEFEE
Transactions on Software Engineering, 22(4):256-266, 1996. 3

Luca Cardelli. Basic polymorphic typechecking. The Science of Programming,
8(2):147-172, 1987. 3

Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano. Developing Ap-
plications with Objective Caml. O’Reilly, 2000. Full text available at http:
//caml.inria.fr/pub/docs/oreilly-book. 4

William Clinger and Jonathan Rees. Revised* Report on the Algorithmic Lan-
guage Scheme. ACM SIGPLAN Lisp Pointers, 4(3):1-55, July/September
1991. Available at ftp://ftp.cs.indiana.edu/pub/scheme-repository/
doc/standards/r4rs.ps.gz. 57

Ludovic Courtés, Andy Wingo, Neil Jerram, Jim Blandy, et al. Guile 2.0.5
Reference Manual, January 2012. Full text available at http://www.gnu.org/
software/guile/manual. Also available on paper from Network Theory, edited
by Brian Gough: http://www.network-theory.co.uk/guile. 13, 49, 86, 102

Luis Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In Conference Record of the Ninth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 207-212, 1982. Available at http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.7528. 57, 63

Ulrich Drepper. What every programmer should know about memory. Technical
report, RedHat, November 2007. 126, 135

http://www.hpl.hp.com/techreports/2000/HPL-2000-165.html
http://www.hpl.hp.com/techreports/2000/HPL-2000-165.html
http://www.hpl.hp.com/hosted/linux/mail-archives/gc/
2008-September/002334.html
http://caml.inria.fr/pub/docs/oreilly-book
http://caml.inria.fr/pub/docs/oreilly-book
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/standards/r4rs.ps.gz
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/standards/r4rs.ps.gz
http://www.gnu.org/software/guile/manual
http://www.gnu.org/software/guile/manual
http://www.network-theory.co.uk/guile
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.7528
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.7528

Bibliography 149

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

R. Kent Dybvig. Three Implementations Models for Scheme. PhD the-
sis, University of North Carolina, April 1987. Full text available at http:
//www.cs.indiana.edu/~dyb/pubs/3imp.pdf. 119

R. Kent Dybvig. Syntactic abstraction: The syntax-case expander. In Andy
Oram and Greg Wilson, editors, Beautiful Code: Leading Programmers FExplain
How They Think. O’Reilly and Associates, 2007. Available at www.cs.indiana.
edu/~dyb/pubs/bc-syntax-case.pdf. Included in [62]. 13, 152

R. Kent Dybvig, David Eby, and Carl Bruggeman. Don’t stop the BI-
BOP: Flexible, and efficient storage management for dynamically-typed lan-
guages. Technical Report TR 400, Indiana University, Computer Science De-
partment, March 1994. Available at http://www.cs.indiana.edu/cgi-bin/
techreports/TRNNN. cgi?trnum=TR400. 127

R. Kent Dybvig, Simon Peyton Jones, and Amr Sabry. A monadic frame-
work for delimited continuations. Technical report, Indiana University, 2005.
Available at http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.
68.9352. 123

Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. A scalable mark-sweep
garbage collector on large-scale shared-memory machines. In High Performance
Computing and Networking (SC’97), 1997. 138

Anton Ertl et al. Forth 200x web page, 2012. An underway effort to update the
1994 Forth standard. http://www.forth200x.org/forth200x.html. 13, 149

ANS Forth Technical Committee. ANS Forth Standard — document X3.215-
1994. American National Standards Institute, 1994. Available at www.
openfirmware.info/data/docs/dpans94.pdf. A new process is now under-
way to update the 1994 Standard [29]. 13

Free Software Foundation. GNU General Public License. Web page, 2007. 123,
142, 145

Richard P. Gabriel and Kent M. Pitman. Endpaper: Technical issues of sep-
aration in function cells and value cells. Lisp and Symbolic Computation,
1(1):81-101, June 1988. Available at http://www.nhplace.com/kent/Papers/
Technical-Issues.html. 95, 121

Martin Gasbichler and Michael Sperber. Final shift for call/cc: direct imple-
mentation of shift and reset. ACM SIGPLAN Notices, 37(9):271-282, Septem-
ber 2002. Available at http://citeseer.ist.psu.edu/viewdoc/summary?
doi=10.1.1.11.3425. 123

GreenArrays. GreenArrays web page, 2010-2012. Headed by the father of
Forth Chuck Moore [60], GreenArrays sells parallel chips for embedded appli-
cations implementing a custom Forth dialect in hardware. Moore designs Forth

http://www.cs.indiana.edu/~dyb/pubs/3imp.pdf
http://www.cs.indiana.edu/~dyb/pubs/3imp.pdf
www.cs.indiana.edu/~dyb/pubs/bc-syntax-case.pdf
www.cs.indiana.edu/~dyb/pubs/bc-syntax-case.pdf
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR400
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR400
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.9352
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.9352
http://www.forth200x.org/forth200x.html
www.openfirmware.info/data/docs/dpans94.pdf
www.openfirmware.info/data/docs/dpans94.pdf
http://www.nhplace.com/kent/Papers/Technical-Issues.html
http://www.nhplace.com/kent/Papers/Technical-Issues.html
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.3425
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.3425

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

150 Bibliography

processors, from transistor layout up, using CAD systems written by himself
in Forth. http://www.greenarraychips.com, http://www.colorforth.com/
vlsi.html. 13

David Gudeman. Representing type information in dynamically-typed lan-
guages. Technical Report TR93-27, University of Arizona, Department of
Computer Science, Tucson, AZ, 1993. Available at ftp://ftp.cs.indiana.
edu/pub/scheme-repository/doc/pubs/typeinfo.ps.gz. 50, 102

C. A. R. Hoare. Hints on programming language design. Technical Report AIM
224, Stanford Al Lab., December 1973. From §3.3:

(2) precompile. This is a directive which can be given to the compiler
after submitting any initial segment of a large program. It causes the com-
piler to make a complete dump of its workspace including dictionary and
object code, [...]

(3) dump. This is an instruction which can be called by the user pro-
gram during execution, and causes a complete binary dump of its code and
workspace into a named user file. The dump can be restored and restarted
at the instruction following the dump by an instruction to the operating
system.

This discusses a feature not unlike our unezxec facility, brought forward in a
very different context with the purpose of optimizing single-pass compilers. 49

ISO. The ANSI C Standard (C99). Technical Report WG14 N1124, ISO/IEC,
1999. 8, 19, 131

ISO. Standard for Programming Language C+-+. Technical Report ISO/IEC
JTC1/SC22/WG21, ISO, 2011. Previously known as “C++0x". A recent draft
close to the final version (N3337, January 2012) is available at http://www.
open-std.org/jtcl/sc22/wg21/docs/papers/2012/n3337.pdf. 7

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Auto-
matic Program Generation. Prentice-Hall International Series in Computer Sci-
ence. Prentice Hall, 1993. Full text available at http://www.itu.dk/people/
sestoft/pebook/. 85

S. Peyton Jones, editor. Haskell 98 Language and Libraries, the Revised Report.
Cambridge Univ. Press, April 2003. 5

Richard Kelsey, William Clinger, and Jonathan Rees. Revised® Report on the
Algorithmic Language Scheme. SIGPLAN Notices, 33(9):26-76, 1998. Available
at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2271.
57, 73, 87

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba.
Hygienic macro expansion. In Richard P. Gabriel, editor, Proceedings of the
ACM Conference on LISP and Functional Programming, pages 151-181, Cam-
bridge, MA, August 1986. ACM Press. 13

http://www.greenarraychips.com
http://www.colorforth.com/vlsi.html
http://www.colorforth.com/vlsi.html
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/typeinfo.ps.gz
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/typeinfo.ps.gz
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
http://www.itu.dk/people/sestoft/pebook/
http://www.itu.dk/people/sestoft/pebook/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2271

Bibliography 151

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

Philip J. Koopman, Jr. Stack Computers. Ellis Horwood Limited, 1989.
Full text available at http://www.ece.cmu.edu/ koopman/stack_computers/
index.html. 13

David A. Kranz. ORBIT: An Optimizing Compiler For Scheme. PhD thesis,
Yale University, New Haven, Connecticut, February 1988. 10, 122

E. Ulrich Kriegel. A conservative garbage collector for an eulisp to ASM/C
compiler. OOPSLA 1993 Workshop on Memory Management and Garbage
Collection, September 1993. 127, 131

Xavier Leroy. Functional programming languages — Part III: program trans-
formations, 2007. A set of slides from a functional programming class, cover-
ing several program transforms in a very clear and accessible style. http://
gallium.inria.fr/"xleroy/mpri/progfunc/transformations.2up.pdf. 10,
11, 122

Bil Lewis, Dan LalLiberte, Richard Stallman, and the GNU Manual Group.
GNU Emacs Lisp Reference Manual, for Emacs Version 23.3. Free Software
Foundation, Inc., Boston, Massachusetts, 3.0 edition, 2011. Available at http:
//www.gnu.org/software/emacs/manual. 8, 18, 48, 95

Sandra Loosemore, Richard M. Stallman, Roland McGrath, Andrew Oram,
and Ulrich Drepper. The GNU C Library Reference Manual. GNU Press, 2006.
134, 139

Dave MacQueen. heap2exec, 2007. http://www.smlnj.org/doc/heap2exec/
index.html. 49

Michel Mauny. Functional programming using Caml Light (version 0.7).
INRIA, 1995. Full text available at http://www.mauny.net/data/papers/
mauny-1995b.pdf. x

John McCarthy. Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine, Part I. Communications of the ACM, 3(4):184-195, 1960.
The famous paper introducing Lisp. McCarthy’s 1995 revision suggests looking
at [88] for eval, including the version which was actually implemented. Avail-
able at http://www-formal.stanford.edu/jmc/recursive.pdf. 46, 73, 76,
78, 81, 95, 127, 154

W.M. McKeeman, J.J. Horning, and D.B. Wortman. A compiler generator.
Prentice-Hall series in automatic computation. Prentice-Hall, 1970. 85

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I.
Information and Computation, 100(1):1-40, 1992. 4

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part II.
Information and Computation, 100(1):41-77, 1992. 4

http://www.ece.cmu.edu/~koopman/stack_computers/index.html
http://www.ece.cmu.edu/~koopman/stack_computers/index.html
http://gallium.inria.fr/~xleroy/mpri/progfunc/transformations.2up.pdf
http://gallium.inria.fr/~xleroy/mpri/progfunc/transformations.2up.pdf
http://www.gnu.org/software/emacs/manual
http://www.gnu.org/software/emacs/manual
http://www.smlnj.org/doc/heap2exec/index.html
http://www.smlnj.org/doc/heap2exec/index.html
http://www.mauny.net/data/papers/mauny-1995b.pdf
http://www.mauny.net/data/papers/mauny-1995b.pdf
http://www-formal.stanford.edu/jmc/recursive.pdf

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

152 Bibliography

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348-375, 1978. The famous paper introduc-
ing the # algorithm. 9, 69

Robin Milner. A calculus of communicating systems, volume 92 of Lecture notes
in computer science. Springer-Verlag, 1980. 4

Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press,
Cambridge, MA, USA, 1991. This is a commentary of [58], and Tofte ex-
plicitly wrote on his home page (http://www.itu.dk/people/tofte/publ/
1990sm1/1990sml.html) that it does not apply to [59]. Available at http://
www.itu.dk/people/tofte/publ/1990sml/frontcommentary.pdf and http:
//www.itu.dk/"tofte/publ/1990sml/1991commentaryBody.pdf. 57

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, August 1990. Available at http://www.itu.dk/people/tofte/
publ/1990sml/front1990sml.pdf and http://www.itu.dk/people/tofte/
publ/1990sml1/1990sml.pdf. 57, 152

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defini-
tion of Standard ML, Revised edition. MIT Press, 1997. 57, 152

Charles E. Moore. colorforth.com, 2012. Chuck Moore’s home page. http:
//colorforth.com. 13, 149

J. Moses. The function of FUNCTION in LISP, or, why the FUNARG prob-
lem should be called the environment problem. Report MAC-M-428 and A.
I. MEMO 199, Massachusetts Institute of Technology, A.I. Lab., Cambridge,
Massachusetts, 1970. 4

Andy Oram and Greg Wilson, editors. Beautiful Code: Leading Programmers
Ezplain How They Think. O’Reilly, 2007. This includes [25]. 149

Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
Cambridge, Massachusetts, 2002. 9

Kent M. Pitman. Special forms in LISP. In LISP Conference, pages 179-187,
1980. 7, 12

Jacques Pitrat. Implementation of a reflective system. Future Gener. Comput.
Syst., 12(2-3):235-242, 1996.

Jacques Pitrat. Artificial Beings (the conscience of a conscious machine). Wi-
ley /ISTE, march 2009.

Marc Pouzet. Lucid synchrone - version 2.0: Tutorial and reference manual,
October 22 2001. 3

http://www.itu.dk/people/tofte/publ/1990sml/1990sml.html
http://www.itu.dk/people/tofte/publ/1990sml/1990sml.html
http://www.itu.dk/people/tofte/publ/1990sml/frontcommentary.pdf
http://www.itu.dk/people/tofte/publ/1990sml/frontcommentary.pdf
http://www.itu.dk/~tofte/publ/1990sml/1991commentaryBody.pdf
http://www.itu.dk/~tofte/publ/1990sml/1991commentaryBody.pdf
http://www.itu.dk/people/tofte/publ/1990sml/front1990sml.pdf
http://www.itu.dk/people/tofte/publ/1990sml/front1990sml.pdf
http://www.itu.dk/people/tofte/publ/1990sml/1990sml.pdf
http://www.itu.dk/people/tofte/publ/1990sml/1990sml.pdf
http://colorforth.com
http://colorforth.com

Bibliography 153

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

Christian Queinnec. A library of high-level control operators. Lisp Point-
ers, ACM SIGPLAN Special Interest Publ. on Lisp, 6(4):11-26, October 1993.
Available at http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.
29.4790. 123

M. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):114-125, 1959. This presents what
is now known as the Rabin-Scott Construction. 123

Jonathan A. Rees and William Clinger. Revised® Report on the Al-
gorithmic Language Scheme. ACM Sigplan Notices, 21(12), December
1986. Available at ftp://ftp.cs.indiana.edu/pub/scheme-repository/
doc/standards/r3rs.ps.gz. 57

Didier Remy and Jérome Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory and Practice of Object Systems, 4(1):27-50, 1998. 4

John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proceedings of the ACM annual conference - Volume 2, ACM 72,
pages 717-740, New York, NY, USA, 1972. ACM. 11, 87, 98

Christophe Rhodes. SBCL: A sanely-bootstrappable Common Lisp. In Robert
Hirschfeld and Kim Rose, editors, Self-Sustaining Systems, First Workshop, S3
2008, Potsdam, Germany, May 15-16, 2008, Revised Selected Papers, volume
5146 of Lecture Notes in Computer Science, pages 74-86. Springer, 2008. 46,
102

Hovav Shacham, Eu jin Goh, Nagendra Modadugu, Ben Pfaff, and Dan Boneh.
On the effectiveness of address-space randomization. In In CCS ’04: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security,
pages 298-307. ACM Press, 2004. Available at http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.118.4638. 51

S. T. Shebs and R. R. Kessler. Automatic design and implementation of lan-
guage data types. SIGPLAN Not., 22(7):26-37, 1987. 102

Olin Shivers. History of T, 2001. Available from http://www.paulgraham.
com/thist.html.

Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal Singh. Ex-
ploiting prolific types for memory management and optimizations. ACM SIG-
PLAN Notices, 37(1):295-306, January 2002. 141

John N. Shutt. Fexprs as the basis of Lisp function application or $vau:
the wultimate abstraction. PhD thesis, Worcester Polytechnic Institute,
September 2010. Available at http://www.wpi.edu/Pubs/ETD/Available/
etd-090110-124904/. 7, 12

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4790
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4790
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/standards/r3rs.ps.gz
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/standards/r3rs.ps.gz
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.4638
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.4638
http://www.paulgraham.com/thist.html
http://www.paulgraham.com/thist.html
http://www.wpi.edu/Pubs/ETD/Available/etd-090110-124904/
http://www.wpi.edu/Pubs/ETD/Available/etd-090110-124904/

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[33]

[89]

154 Bibliography

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten, Robby
Findler, and Jacob Matthews. Revised® Report on the Algorithmic Language
Scheme, September 2007. Available at http://www.r6rs.org. 8, 10, 12, 19,
57,73, 116

The SRFI Editors. Scheme Requests For Implementation. SRFIs, archived
discussions and process documents are available at http://srfi.schemers.
org/, 1998-2010. 6

Richard Stallman and the GNU Emacs contributors. GNU Emacs Manual.
Free Software Foundation, Inc., Boston, Massachusetts, Sixteenth (updated
for Emacs version 23.3) edition, 2011. Available at http://www.gnu.org/
software/emacs/manual. 86

Guy Lewis Steele, Jr. Data representations in PDP-10 MACLISP. Report A.
I. MEMO 420, Massachusetts Institute of Technology, A.I. Lab., Cambridge,
Massachusetts, 1977. Available at http://dspace.mit.edu/handle/1721.1/
6278. 95, 127

Guy Lewis Steele, Jr. Rabbit: A compiler for scheme. AI Technical Report
474, MIT Artificial Intelligence Laboratory, May 1978. 10, 122

Guy Lewis Steele, Jr. Common Lisp: the Language. Digital Press, Bedford,
Massacusetts, second edition, 1990. x

Guy Lewis Steele, Jr. Growing a language. Higher-Order and Symbolic Com-
putation, 12(3):221-236, October 1999. 5, 6, 14

Guy Lewis Steele, Jr. A growable language. In OOPSLA ’06: Compan-
ion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 505-505, New York, NY, USA,
2006. ACM. Slides are available at http://labs.oracle.com/projects/plrg/
Publications/00PSLA-Growable-Language-2006public.pdf. 6

Guy Lewis Steele, Jr. and Gerald Jay Sussman. The revised report on
SCHEME, a dialect of LISP. Al Memo 452, MIT, 1978. Available at
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-452.pdf. 6, 7,
83

Herbert Stoyan. The influence of the designer on the design—J. McCarthy and
LISP, pages 409-426. Academic Press Professional, Inc., San Diego, CA, USA,
1991. A detailed analysis on early Lisp memos by McCarthy; McCarthy cited
this article in his 1995 revision of [51], stating that the versions of eval shown
by Stoyan included the one which was actually implemented. Available at http:
//www8.informatik.uni-erlangen.de/html/lisp/mcc91.html. 151

Gerald Jay Sussman and Guy Lewis Steele, Jr. SCHEME: An interpreter for
extended lambda calculus. Technical Report Al Memo No. 349, Massachusetts

http://www.r6rs.org
http://srfi.schemers.org/
http://srfi.schemers.org/
http://www.gnu.org/software/emacs/manual
http://www.gnu.org/software/emacs/manual
http://dspace.mit.edu/handle/1721.1/6278
http://dspace.mit.edu/handle/1721.1/6278
http://labs.oracle.com/projects/plrg/Publications/OOPSLA-Growable-Language-2006public.pdf
http://labs.oracle.com/projects/plrg/Publications/OOPSLA-Growable-Language-2006public.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-452.pdf
http://www8.informatik.uni-erlangen.de/html/lisp/mcc91.html
http://www8.informatik.uni-erlangen.de/html/lisp/mcc91.html

Bibliography 155

190]

191]

[92]

193]

[94]

[95]

[96]

[97]

98]

[99]

Institute of Technology, Cambridge, UK, December 1975. Available at ftp:
//publications.ai.mit.edu/ai-publications/pdf/AIM-349.pdf. 6, 10, 73,
122

Herb Sutter. The free lunch is over: a fundamental turn toward toward con-
currency. Dr. Dobb’s Journal, March 2005. 125

Ken Thompson. Regular expression search algorithm. Journal of the ACM,
11(6):419-422, June 1968. 123

Peter Van Roy. Programming paradigms for dummies: What every programmer
should know. In New Computational Paradigms for Computer Music, pages 9—
47. Delatour, 2009. 1

Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. The MIT Press, Cambridge, Mass., 2004. 4

Stephen T. Weeks. MLton user guide, September 07 2000. 46

Derek White and Alex Garthwaite. The GC interface in the EVM. Technical
Report SML TR-98-67, Sun Microsystems Laboratories, December 1998. 141

Cheryl A. Wiecek. A model and prototype of VMS using the Mach 3.0 kernel. In
Proceedings of the Workshop on Micro-kernels and Other Kernel Architectures,
pages 187204, Seattle, WA, USA, April 1992. USENIX Association. 14

F. A. Williams. Handling identifiers as internal symbols in language processors.
Communications of the ACM, 2(6), June 1959. 134

Paul R. Wilson. Uniprocessor garbage collection techniques (Long Version).
Submitted to ACM Computing Surveys, 1994. 45, 49, 52, 96

Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press,
Cambridge, Massachusetts, 1993. 29

ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-349.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-349.pdf

Titre en frangais GNU epsilon — un langage de programmation extensible

Résumé en frangais Le réductionnisme est une technique réaliste de conception et im-
plantation de vrais langages de programmation, et conduit & des solutions plus faciles & étendre,
expérimenter et analyser.

Nous spécifions formellement et implantons un langage de programmation extensible, basé sur
un langage-noyau minimaliste impératif du premier ordre, équipé de mécanismes d’abstraction forts
et avec des possibilités de réfiexion et auto-modification. Le langage peut étre étendu & des niveaux
trés hauts : en utilisant des macros a la Lisp et des transformations de code a code réécrivant les
expressions étendues en expressions-noyau, nous définissons les clotures et les continuations de
premiére classe au dessus du noyau.

Les programmes qui ne s’auto-modifient pas peuvent étre analysés formellement, grace a la
simplicité de la sémantique. Nous développons formellement un exemple d’analyse statique et nous
prouvons une propriété de soundness par apport a la sémantique dynamique.

Nous développons un ramasse-miettes paralléle qui convient aux machines multi-coeurs, pour
permettre I'exécution efficace de programmes paralléles.

Titre en anglais GNU epsilon — an extensible programming language

Résumé en anglais Reductionism is a viable strategy for designing and implementing prac-
tical programming languages, leading to solutions which are easier to extend, experiment with and
formally analyze.

We formally specify and implement an extensible programming language, based on a mini-
malistic first-order imperative core language plus strong abstraction mechanisms, reflection and
self-modification features. The language can be extended to very high levels: by using Lisp-style
macros and code-to-code transforms which automatically rewrite high-level expressions into core
forms, we define closures and first-class continuations on top of the core.

Non-self-modifying programs can be analyzed and formally reasoned upon, thanks to the lan-
guage simple semantics. We formally develop a static analysis and prove a soundness property
with respect to the dynamic semantics.

We develop a parallel garbage collector suitable to multi-core machines to permit efficient ex-
ecution of parallel programs.

Discipline Informatique

Mots-clés programmation, langage, extensibilité, macro, transformation, reflection, bootstrap,
interprétation, compilation, parallélisme, concurrence, ramasse-miettes

Intitulé et adresse du laboratoire

LIPN, UMR 7030 — CNRS, Institut Galilée, Université Paris 13
99, avenue J.-B. Clément

93430 Villetaneuse

France

	Abstract
	Abstract
	Résumé

	Dedication
	Acknowledgments
	Introduction
	Programming language taxonomy
	Paradigm
	Typing policy
	Concurrency model

	Hybridization and complexity
	Hybridization limits

	Growing a language
	Procedural and syntactic abstraction
	Syntactic abstraction and core-based languages: macros
	Transforms as syntactic abstraction
	Why reductionism
	Related languages

	Our solution
	Summary

	The core language 0
	Features and rationale
	First order
	Reflection
	Handles
	Primitives
	Bundles
	Parallel features

	Syntax
	Meta-syntactic conventions for expressions

	Semantics and the real world
	Resource limits

	Configurations
	The global state
	Notational conventions for states and environments

	Global and local environments
	Memory
	Procedures
	Primitives
	Holed expressions
	Stacks
	Futures
	Configurations

	Small-step dynamic semantics
	Small-step reduction
	Sequential reduction
	Failure
	Error recovery and personalities

	One-step dynamic semantics
	Summary

	Reflection and self-modification
	Global definitions
	Programs and self-modification
	Programs
	Static programs
	When to run analyses

	Unexec
	The stuff values are made of
	Marshalling
	Boxedness tags
	Marshalling properties

	Summary

	A static semantics for 0: dimension analysis
	Dimension inference
	The dimension lattice (N, ,)
	Definition and properties
	There cannot be a most precise dimension analysis

	Semantic soundness
	Resynthesization
	Weak dimension preservation
	Semantic soundness properties

	Reminder: why we accept ill-dimensioned programs
	Summary

	Syntactic extension
	Preliminaries
	S-expressions
	Lisp syntax
	Lisp informal syntax
	Critique

	Syntactic extensions: the 1 personality
	Definition via bootstrapping
	Phase (i): extend Scheme with untyped data
	Phase (ii): implement 0 in extended Scheme
	Phase (iii): build reflective data structures and interpreter in 0
	Macros
	Transforms
	An aside: developing, testing, and the ordering of phases
	Phase (iv): fill reflective data structures

	Unexec
	Optimizations
	Sample extensions
	Quoting and quasiquoting
	Variadic procedure wrappers
	Sum-of-product types
	Closure Conversion
	Futures
	First-class continuations

	Implementation status

	Future work
	Summary

	A parallel BiBOP garbage collector
	Motivation
	Boehm's garbage collector
	High-level design
	The functional hypothesis

	The user view: kinds, sources and pumps
	Kinds
	Sources
	Pumps
	Kindless objects
	Miscellaneous user functionalities:

	Implementation
	Kinded objects
	BiBOP pages
	Page creation
	Page sweeping
	Page refurbishing
	Page destruction

	Sources
	Pumps
	The allocation function

	Kindless and large objects
	Garbage collection
	Synchronization
	Data density
	Closures
	Lazy and object-oriented personalities

	Status
	Summary

	Conclusion
	Bibliography

