
GNU Jitter workshop

GNU Hackers’ Meeting 2022
https://www.gnu.org/ghm/2022/#workshop

Written by Luca Saiu
https://ageinghacker.net

The author places this handout into the public domain,
up to the extent of the applicable law.

Version 1.1, last updated on October 3rd 2022
İzmir, October 2nd 2022

1 The İzmir language
The İzmir language is a very simple untyped1 language with integer values and global variables.

The İzmir language is designed to be easy to compile. The code linked from https://www.gnu.org/
ghm/2022/#workshop contains a working parser, and is designed to be completed with:

• a compiler generating İzmirVM code;

• a working İzmirVM virtual machine, generated by Jitter.

The build system is already given and does not need to be modified.

1.1 İzmir syntax
The İzmir langauge features expressions and statements: an expression serves to compute a value: every
expression one result. A statement does not compute a result, but has an effect : either changing the
value of a variable or printing a value.

An İzmir-language program is a sequence of statements.

1.1.1 Expressions

Let n be an integer number such as 3, -1 or 42.
Let b be the Boolean constant true or false.
Let x be a variable name such as x, y or foo.

Any number is an expression:
e ::“ n

Any Boolean constant is an expression:
e ::“ b
Notice that Boolean constants are effectively integers, and can be freely mixed and combined with them.

Any variable is also an expression:
e ::“ x

Given two expressions, their sum is an expression:
e ::“ e + e

The same holds for subtraction, multiplication, division and remainder:
e ::“ e - e
e ::“ e * e
e ::“ e / e

1There is no difference between integers and Booleans: an expression such as false + 3 is considered to be correct.

1

e ::“ e % e

Given one expression its negative version is also an expression:
e ::“ - e

Boolean constants (true and false) are expresssions:
We can also use logic operators to build expressions. Given an expression its logical negation is also

an expression:
e ::“ not e

Given two expression their logical conjunction (logical “and”) and logical disjunction (logical “or”) are
also expressions:
e ::“ e and e
e ::“ e or e

Comparison operators between integers build Booleans values. Comparison operators are also used
to build expressions:
e ::“ e = e
e ::“ e != e
e ::“ e < e
e ::“ e > e
e ::“ e <= e
e ::“ e >= e

1.1.2 Statements

The empty statement skip, which does nothing, is a statement:
s ::“ skip;

The assignment statement, which evaluates an expression and assigns it to a variable, is a statement:
s ::“ x := e;

The printing statement, which evaluates an expression and prints it to the standard output, is a
statement:
s ::“ print e;

Given two statements, their sequential composition (which means executing one after the other) is
also a statement:
s ::“ s; s;

Given an expression and a statement we can build from them a while loop by using the expression as
the guard and the statement as the body : the while statement execution consists in executing the body
repetedly, as long as the guard evaluates to a true result:
s ::“ while e do s end;

2

1.2 Compilation rules of the İzmir into the İzmirVM virtual machine
The style of compilation presented here is compositional : compiling a language phrase consists in com-
piling all of its subphrases, plus occasionally some additional work.

1.2.1 Compiling expressions

We compile a constant by pushing it onto the stack:
JnK “ pushconstant n
JtrueK “ pushconstant 1
JfalseK “ pushconstant 0

If the variable x is held in the register rx we compile the expression x by pushing the value of the
register rx:
JxK “ pushregister rx

Unary-operator expressions are compiled by first compiling the sub-expression, with one more instruc-
tion after it; the one instruction after it pops one element from the stack and pushes another element in
its place:
J- eK “ JeK; unaryminus
Jnot eK “ JeK; not

Binary-operator expressions are compiled by first compiling the left sub-expression, then compiling
the right sub-expression, and finally emitting one more instruction after them; the one instruction after
them pops two elements from the stack and replaces them with a new element, which is the result of
some computation:
Je1 + e2K “ Je1K; Je2K; plus
Je1 - e2K “ Je1K; Je2K; minus
Je1 * e2K “ Je1K; Je2K; times
Je1 / e2K “ Je1K; Je2K; divided
Je1 % e2K “ Je1K; Je2K; remainder
Je1 = e2K “ Je1K; Je2K; equals
Je1 != e2K “ Je1K; Je2K; different
Je1 < e2K “ Je1K; Je2K; less
Je1 > e2K “ Je1K; Je2K; greater
Je1 <= e2K “ Je1K; Je2K; lessorequal
Je1 >= e2K “ Je1K; Je2K; greaterorequal

1.2.2 Compiling statements

The translation of an empty statement is empty:
JskipK
“

The translation of a printing statement consists in first translating the expression, then emitting a
print instruction that pops the result and prints it:
Jprint eK
“ JeK

print

The translation of an assignment to a variable x held in a register rx consists in first translating the
expression, then popping the result into the register:

3

Jx := eK
“ JeK

pop rx

The translation of the sequential composition of two statements is the translation of the first statement
followed by the translation of the second statement:
Js1; s2K
“ Js1K

Js2K

The translation of a while loop is as follows:
Jwhile e do s end;K
“ b $check
$beginning:

JsK
$check:

JeK
bnz $beginning

The labels shown here as $beginning and $check must be fresh (in the sense of never previously
used).

1.2.3 Compiling programs

A program is compiled by compiling each statement inside it, one after the other.

4

