
An introduction to compiler construction and functional
 programming through the implementation of GNU epsilon

Luca Saiu <positron@gnu.org> 2007-04-02

An LCR seminar

LIPN - Universite Paris 13

mailto:positron@gnu.org

Who I am and what I do here

Luca Saiu <positron@gnu.org> 2007-04-02

 I come from Pisa...I come from Pisa...

 Para-virtualizationPara-virtualization
 NetworksNetworks
 Kernel programmingKernel programming
 GUIs in a functional languageGUIs in a functional language

Introducing myselfIntroducing myself

I'm working on I'm working on Marionnet with Jean-Vincent Loddo: with Jean-Vincent Loddo:

mailto:positron@gnu.org

Presentation outline

Luca Saiu <positron@gnu.org> 2007-04-02

 Functional programming in a Functional programming in a practical context context

 GNU GNU epsilon: an overview of how it is now...: an overview of how it is now...

 ...an of how it ...an of how it willwill be be

 (free software and the GNU Project)

We're going to talk about...We're going to talk about...

mailto:positron@gnu.org

Functional programming in practice

Luca Saiu <positron@gnu.org> 2007-04-02

 explain explain λ−λ−calculus, calculus, ω−ω−order, types, syntax, semanticsorder, types, syntax, semantics

 or just impress you with a demonstrationor just impress you with a demonstration

Now I could...Now I could...

mailto:positron@gnu.org

A practical demonstration

Luca Saiu <positron@gnu.org> 2007-04-02

dy/dx = 0 (with y dy/dx = 0 (with y ≠≠ x) x)

dx/dx = 1dx/dx = 1

d(f(x) + g(x))/dx = df(x)/dx + dg(x)/dxd(f(x) + g(x))/dx = df(x)/dx + dg(x)/dx

d(f(x) - g(x))/dx = df(x)/dx - dg(x)/dxd(f(x) - g(x))/dx = df(x)/dx - dg(x)/dx

d(f(x) * g(x))/dx = df(x)/dx * g(x) + f(x) * dg(x)/dxd(f(x) * g(x))/dx = df(x)/dx * g(x) + f(x) * dg(x)/dx

d(sin(f(x)))/dx = cos(f(x)) * df(x)/dxd(sin(f(x)))/dx = cos(f(x)) * df(x)/dx

d(cos(f(x)))/dx = - sin(f(x)) * df(x)/dxd(cos(f(x)))/dx = - sin(f(x)) * df(x)/dx

No time for showing you a compiler, unfortunately...No time for showing you a compiler, unfortunately...

mailto:positron@gnu.org

The demonstration

Luca Saiu <positron@gnu.org> 2007-04-02

......

mailto:positron@gnu.org

epsilon: applications

Luca Saiu <positron@gnu.org> 2007-04-02

As you have just seen epsilon As you have just seen epsilon isis usable, but not polished yet. usable, but not polished yet.

Applications:Applications:

 Programming tools: Programming tools: epsilonlexepsilonlex and and epsilonyaccepsilonyacc

 Interpreters and compilers: BASIC, Lisp, Prolog, ...Interpreters and compilers: BASIC, Lisp, Prolog, ...

 Simple graphic hacksSimple graphic hacks

 ICFP Programming Contests: 2004 and 2005ICFP Programming Contests: 2004 and 2005

 Some AI applications (games)Some AI applications (games)

mailto:positron@gnu.org

epsilon: features

Luca Saiu <positron@gnu.org> 2007-04-02

Some features of the implementation you saw:Some features of the implementation you saw:

 Higher-orderHigher-order

 Static typing: type inference, parametric polymorphismStatic typing: type inference, parametric polymorphism

 Quite a lot of ground typesQuite a lot of ground types

 Monadic I/OMonadic I/O

 An half-decent libraryAn half-decent library

 Relatively efficientRelatively efficient

mailto:positron@gnu.org

epsilon: history

Luca Saiu <positron@gnu.org> 2007-04-02

Three implementations: 2001-2002, 2002-2006, 2006- implementations: 2001-2002, 2002-2006, 2006-

 ~60,000 lines of C code lines of C code

 My MD thesis describes each implementationMy MD thesis describes each implementation
in (relative) detailin (relative) detail

(it's available on my home-page here at LIPN)(it's available on my home-page here at LIPN)

 You saw the You saw the second implementation implementation

mailto:positron@gnu.org

epsilon: the second implementation

Luca Saiu <positron@gnu.org> 2007-04-02

 Compiler written in CCompiler written in C

 Assembler from textual notation to bytecodeAssembler from textual notation to bytecode

 Bytecode interpreterBytecode interpreter

Separate compilation is supported:Separate compilation is supported:

mailto:positron@gnu.org

Compilation model

Luca Saiu – 02-04-2007

compiler

assembler
first.eaml

eAM

compiler

assembler

compiler

assembler

linker Bytecode
libraries are
also supported

second.eaml third.eaml

first.eamo second.eamo third.eamo

a.eamx

second.epb
second.epi

first.epb
first.epi

third.epb
third.epi

Second implementation (2002-2006): eAM

Luca Saiu – 02-04-2007

Two execution models:

interpreter

a.eamx

...which limits the solution's practicality

translator

GCC

a.out

a.eamx

a.cruntime

This file may be huge
(~megabytes)...

a.eamx
a.eamx

epsilon and GNU

Luca Saiu – 02-04-2007

 epsilon is part of the GNU Project

Free Software

Luca Saiu <positron@gnu.org> 2007-04-02

 ...its history is extremely interesting, but we have no...its history is extremely interesting, but we have no
time nowtime now (hint: contact me)

A philosophical movement started by Richard M. StallmanA philosophical movement started by Richard M. Stallman
in the early Eighties...in the early Eighties...

 Huge success: tens of thousands of programs, severalHuge success: tens of thousands of programs, several
whole operating systems...whole operating systems...

 ...but first of all a movement based on ...but first of all a movement based on ethical values values

(Original author of Emacs, GCC, ...)(Original author of Emacs, GCC, ...)

mailto:positron@gnu.org

The four freedoms

Luca Saiu <positron@gnu.org> 2007-04-02

 The freedom to use the software, for any purpose

 The freedom to modify it to suit your needs

 The freedom of distributing copies of it
“to help your neighbor”

 The freedom of distributing modified copies of it
“to help the community”

 Copyleft: the GNU General Public LicenseCopyleft: the GNU General Public License

mailto:positron@gnu.org

Free Software vs. Open Source

Luca Saiu <positron@gnu.org> 2007-04-02

 Two Two veryvery different movements: different movements:
ethical values vs. vs. practical convenience

 ...but adherent of different movements often cooperate on...but adherent of different movements often cooperate on
practical projectspractical projects

By the way, the operating system name is By the way, the operating system name is “GNU/Linux”;;
““Linux” is its kernel...Linux” is its kernel...

 Linus Torvalds and Eric Raymond have the spotlight theseLinus Torvalds and Eric Raymond have the spotlight these
days. They advocate Open Source, not Free Software.days. They advocate Open Source, not Free Software.

mailto:positron@gnu.org

The GNU Project

Luca Saiu <positron@gnu.org> 2007-04-02

A project to build a whole operating system which is freeA project to build a whole operating system which is free
software, compatible with Unix.software, compatible with Unix.

 Started in 1983, complete in the first Nineties, exceptStarted in 1983, complete in the first Nineties, except
for the kernel...for the kernel... the HURD

 ...Linux arrived to fill the last gap...Linux arrived to fill the last gap

 The system is mature, complete, efficient, solidThe system is mature, complete, efficient, solid

 ...but applications are always needed: the project grew...but applications are always needed: the project grew
more ambitiousmore ambitious

mailto:positron@gnu.org

The GNU Project today

Luca Saiu <positron@gnu.org> 2007-04-02

First of all, spreading the word about freedomFirst of all, spreading the word about freedom

 Technical requisites: GNU projects must Technical requisites: GNU projects must fit well together

 Uniform coding and documentation Uniform coding and documentation style

 Avoiding duplicate workAvoiding duplicate work

 Strategically important applications: making proprietary applications: making proprietary
software obsoletesoftware obsolete

 A responsibility for other reasons: GNU software hasA responsibility for other reasons: GNU software has
also a fame of also a fame of very high techincalvery high techincal quality quality

 Having a clear position in political battles: softwareHaving a clear position in political battles: software
patents, copyright on interfaces, DRM...patents, copyright on interfaces, DRM...

mailto:positron@gnu.org

epsilon in GNU

Luca Saiu <positron@gnu.org> 2007-04-02

epsilon is (currently) a peripherical project within the systemepsilon is (currently) a peripherical project within the system

 Extremely portable (x86, PowerPC, UltraSparc)Extremely portable (x86, PowerPC, UltraSparc)

 Useful as an extension language, with GuileUseful as an extension language, with Guile

 it fits well with the rest of the systemit fits well with the rest of the system

 ...but no other statically-typed functional languages are...but no other statically-typed functional languages are
in GNUin GNU

mailto:positron@gnu.org

eAM: third implementation (2006-)

Luca Saiu – 2007-04-02

 Objectives:
 Maximum Generality and efficiency
 (also compromising simplicity)

 Predefined general registers...
 and no other data structure

 Bottom-up strategy:
 A general language-neutral machine

 The compiler isn't written yet

 By default: no stack, no heap
 No fixed calling convention

 User-definable types and primitive operators, with
 C; zero overhead

Third implementation: compilation model

Luca Saiu – 2007-04-02

compiler

C generator
first.eaml

compiler

C generator

compiler

C generator

GCC

second.eaml third.eaml

a.out

second.???first.??? third.???

first.c second.c third.c

runtime

Generating native code is now realistic.

Third implementation: notable aspects

Luca Saiu – 2007-04-02

Basic block as C procedures:

eAM registers to assembly registers:
Es.: x86

%r0 %ebx
%r1 %edi
%r2 %esi

%r1 := %r2
goto target:
...

target:
%r3 := %r1
...

continuation_t block1(void){
REGISTER_1 := REGISTER_2;
return target();
...

}

continuation_t target(void){
REGISTER_3 := REGISTER_1;

 ...
}

...and “slow jumps”
when ABIs forbid tail-call
optimizations

New eAM: an extension example

Luca Saiu – 2007-04-02

Integers

exported primitive "+"
 arity 2
c-name
 "PRIMITIVE_PLUS"
c-declaration
{#define PRIMITIVE_PLUS(X, Y) \
 ((word_t)((integer_t)(X) + (integer_t)(Y))) }
c-implementation
{}
end primitive

Primitive definition

Primitive use in
eAML

L:
%r0 := +(%r2, %r3)
%r1 := +(%r1, %r3)
%r3 := +(%r3, %r2)

No stack and no garbage collector by default

New eAM: a micro-benchmark

Luca Saiu – 2007-04-02

MCD:

 /* ... */
 while(x != y){
 if(x < y)
 y -= x;
 else
 x -= y;
 }

C

define mcd =
 fix \ mcd . \ x . \ y .
 if x = y then
 x
 else if x < y then
 mcd x (y - x)
 else
 mcd (x - y) y;epsilon

mcd:
 if =(%r0, %r1) goto %r3
 if <=(%r0, %r1) goto less:
 %r0 := -(%r0, %r1)
 goto mcd:
less:
 %r1 := -(%r1, %r0)
 goto mcd:

eAML

...

The future

Luca Saiu <positron@gnu.org> 2007-04-02

epsilon should be implemented with a cleanly epsilon should be implemented with a cleanly layered
approach:approach:

 extended language, epsilon, core language, eAM, epsilon, core language, eAM

 Each layer useful and Each layer useful and reusable by itself by itself

 ...and ...and a Scheme backend (I promised it to RMS) (I promised it to RMS)

User-definable syntax,
semantics and constraints Easy to reason about:

partial evaluation,
analysis for parallel
execution, ...

mailto:positron@gnu.org

Thanks

Luca Saiu – 2007-04-02

positron@gnu.org
http://www.gnu.org/software/epsilon

saiu@lipn.univ-paris13.fr

For more information...

http://www-lipn.lipn.univ-paris13.fr/~saiu

Thanks.

http://www.gnu.org/software/epsilon

