
The trivialML language: formal syntax, semantics and typing [version 2.3a]

Programmation Fonctionnelle Avancée, année 2011-2012
http://ageinghacker.net/lipn-stuff/teaching/PFA-2011/

Master 2 Programmation et Logiciels Sûrs — Institut Galilée, Université Paris 13

Luca Saiu <positron@gnu.org>
Last updated on November 27th 2012 [updated my website URL and e-mail]

trivialML is a statically-typed call-by-value purely func-
tional language, essentially an OCaml subset. Differently
from OCaml, trivialML only supports type checking (rather
than type inference), and does not support sum types or
pattern-matching. Recursion is only supported through
global function definitions. Of course trivialML does not
include more advanced features such as modules or objects,
either.

This document contains a reasonably rigorous mathemat-
ical specification of trivialML, suitable to be translated into
a working interpreter written in a functional language such
as OCaml.

1 Syntax

Even if trivialML resembles an ML core we want to stress
that it is a different language; that’s why we write trivialML
keywords in French, each one being the obvious translation
of a corresponding OCaml keyword. We formally specify
trivialML’s syntax by a context-free grammar.

We use the metavariable i for integer literals, b for boolean
literals, c for values (also called “constants”), x for variables,
e for expressions, t for toplevel forms, p for programs, τ for
types, possibly with decorations. “op” represents primitive
operators: op P t+, -, *, /, =, <, et, ouu.

Of course expressions are central in a functional language. A
trivialML expression can be (respectively) a literal constant,
a variable, a primitive operator use, an anonymous function,
a function application, a conditional or a block:
e ::�
hack!| c
hack!| x
hack!| e op e
hack!| fonction x : τ -> e
hack!| e e
hack!| si e alors e sinon e
hack!| soit x : τ � e dans e
Notice how type declarations are mandatory for all binding
forms in trivialML: each one always includes a “: τ ” decla-
ration right after the variable name.

trivialML only has integer, boolean and function types,
with no type variables:
τ ::�
hack!| entier
hack!| booléen
hack!| τ -> τ

It’s easy to anticipate at this point that the only supported
literal constants are integers and booleans:

c ::�
hack!| i
hack!| b

A trivialML toplevel form is simply a global definition, sim-
ilar to an OCaml toplevel let (and different from the block
let..in which resembles trivialML’s soit..dans):
t ::�
hack!| soit x : τ � e;;

A program is a sequence of zero or more toplevel forms
followed by exactly one expression, the main expression.
Since there is no input/output feature in trivialML, the idea
is that we will take the value computed by the main expres-
sion as the final “result” of the whole program.
p ::�
hack!| e
hack!| t p

For simplicity we will ignore the issue of parsing [ALSU07] in
this document, and always write programs in concrete syn-
tax, possibly with meta-variables; but of course a working
interpreter will work on programs represented as abstract
syntax trees rather than strings, and a parser will be needed
to obtain such trees from a string representation.

Here’s a sample trivialML program:

soit fact : entier -> entier =
fonction n : entier ->

si n = 0 alors
1

sinon
n * (fact (n - 1));;

fact 10

Notice that there is no double semicolon at the end of the
main expression.

2 Semantics

We are now proceeding to specify a denotational semantics
[Win93] for trivialML: in other words, our semantics will be
a mathematical function mapping a program and its global
variable assignment to its “meaning”, which is to say the re-
sult of evaluating the main expression.

2.1 Semantic domains

Let P be the set of all trivialML programs, T the set of all
trivialML toplevel forms, E the set of all trivialML expres-
sions, X the set of all variables, and C the set of all values.

1



2.1.1 Environments

An environment is a function X Ñ C from identifiers to val-
ues. We use environments to keep track of the value of each
variable when evaluating parts of the program.

Since environments are functions, functions are relations,
and relations are sets of pairs, it is formally correct to use
set notation when speaking about functions: we will use the
symbol “∅” for the empty environment.

If η and γ are environments, x is a variable and c is a
constant, we write:

• “ηrx ÞÑ cs” to mean an environment identical to η ev-
erywhere except on x, where the updated environment
maps x into c;

• “ηrγs” to mean an environment identical to η every-
where except on the domain of γ, where the updated
environment behaves like γ. In other words, ηrγs con-
tains the bindings of η merged with the bindings of γ,
where in case of conflict γ takes priority.

2.1.2 Values

We have already said that our values can only be integers,
booleans or functions: hence we can define C as a disjoint
sum of integers, booleans, and functions. We can disregard
the internal structure of integers and booleans, but functions
are much more interesting; we represent a function by a data
structure called a closure. A closure is a triple containing:

• an environment : the local environment which was ac-
tive at the time of function creation;

• a variable: the function formal parameter;

• an expression: the function body.

We write integer values as Ipiq for i P Z, boolean values as
Bpbq for b P tvrai, fauxu, and function values as Fpρ, x, eq
for ρ P X Ñ C, x P X, e P E. Notice that in our notation “I”,
“B” and “F” are just labels, not unlike value constructors in
OCaml.

For example, Ip42q is the integer value “forty-two” and
Fp∅, n, n + 1q is a “successor” function value.

2.2 Expression semantics

Since we also have global definitions in addition to local
binders (function parameters and blocks), we need two dis-
tinct environments for evaluating expressions. We will use
the metavariable Γ for global environments, and and the
metavariable ρ for local environments.

The next definition will be our first one containing some
English text which risks to be mistaken for trivialML syn-
tax; from now on we will write such meta-syntactic op-
erations in underlined italic and in English (for example
“let x be 2 in x”), to distinguish them from similar pieces of
trivialML syntax, written in typewriter font and in French
(for example “soit x = 2 dans x”). The same holds for
infix operators such as “+”: the plus sign in “2 � 2” is an
actual arithmetic operation to be executed, while the plus
sign in 2 + 2 is just a piece of a trivialML program; of course
this distinction is essential when writing interpreters.

Our expression evaluation function Err ss takes three pa-
rameters: a trivialML expression, a local environment, and
a global environment; its result is a value. More formally we
can write:

Err ss : E Ñ pX Ñ Cq Ñ pX Ñ Cq Ñ C

The heart of our semantics is the following definition of
Err ss :

ErrissρΓ � Ipiq
ErrbssρΓ � Bpbq
ErrxssρΓ � Γrρspxq
Erre1 op e2ssρΓ � pErre1ssρΓq op pErre2ssρΓq
Errfonction x : τ -> essρΓ � Fpρ, x, eq
Erre1 e2ssρΓ �
aalet Fpρc, xc, ecq be Erre1ssρΓ in
aalet c2 be Erre2ssρΓ in
aaErrecsspρcrxc ÞÑ c2sqΓ
Errsi e1 alors e2 sinon e3ssρΓ �
aalet c1 be Erre1ssρΓ in
aaif c1 � Bpvraiq then Erre2ssρΓ else Erre3ssρΓ
Errsoit x : τ � e1 dans e2ssρΓ �
aalet c1 be Erre1ssρΓ in
aaErre2sspρrx ÞÑ c1sqΓ

We give a quick commentary of the definition above, in
order.

The semantics of a constant is the same constant. The
semantics of a variable is its value in the current environ-
ment, either local or (if the variable is unbound in the local
environment) global; notice how the updated environment is
applied like a function. The semantics of a primitive oper-
ation is the result of executing the corresponding primitive
operation on the semantics of its arguments, evaluated in the
same environments (here we use Err ss recursively for the
first time). The semantics of a function is simply a closure
containing the local environment, the formal parameter and
the body. The semantics of a function application is obtained
by computing the semantic of the operator, which should
return a closure, and the semantics of the operand, yielding
the actual parameter; we obtain the final result by evaluat-
ing the closure body in the closure environment, extended
by binding the formal parameter to the actual parameter.
The semantics of a conditional is obtained by computing the
semantics of the condition: if it’s true then the semantics
of the whole conditional is the same as the semantics of the
“then” branch, otherwise it’s the same as the semantics of
the “else” branch (same environments). The semantics of a
block is given by evaluating the bound expression, and then
evaluating the body in an environment extended by binding
the bound variable to the value obtained before.

Notice that in the semantics above we never used types and
we assumed all types were correct (for example, we assumed
the operator of a function application to yield a closure and
the condition of a conditional to yield a boolean); this is
acceptable because trivialML is a statically-typed program-
ming language, which means that we do type checking in a
separate phase, before execution.

2



2.2.1 Alternative block semantics

The following alternative definition for the block is opera-
tionally equivalent to the one above, and shows how a block
can be emulated by applying an anonymous function:

Errsoit x : τ � e1 dans e2ssρΓ �
aaErrpfonction x : τ -> e2q e1ssρΓ

For example it’s easy to convince oneself that the expression
“soit x : entier = 20 dans x + 1” will behave just like
“(fonction x : entier -> x + 1) 20”.

2.3 Toplevel semantics
A toplevel forms yields no “result” in itself: we just evaluate
a given toplevel form in a given global environment, obtain-
ing a new global environment: so if we call T rr ss the toplevel
form evaluation function we can write:

T rr ss : T Ñ pX Ñ Cq Ñ pX Ñ Cq

Here is the definition of T rr ss :

T rrsoit x : τ = e;;ssΓ �
aalet c be Erress∅Γ in
aaΓrx ÞÑ cs

Here the idea is simply obtaining an updated global en-
vironment where the bound name is associated to the result
of evaluating the expression.

2.4 Program semantics
We evaluate a given program in a given global environment,
obtaining a value (which is the result of evaluating the main
expression) as a result. We call P rr ss the program evalua-
tion function. Since the program evaluation function takes
a program and a global environment and returns a value, we
can write:

P rr ss : P Ñ pX Ñ Cq Ñ C
Here is the definition of P rr ss :

P rressΓ � Erress∅Γ
P rrt.pssΓ �
aalet Γ1 be T rrtssΓ in
aaP rrpssΓ1

The definition above clearly follows the inductive structure
of a program:

• base case: the result of evaluating a program only made
of a main expression without any toplevel forms is the
same as evaluating the main expression in the same
global environment, with an empty local environment;

• recursive case: for evaluating a program containing at
least one initial toplevel form, we first evaluate the
initial toplevel form in the given global environment,
obtaining a new global environment; in this new global
environment we evaluate the rest of the program.

3 Typing
We are now about to specify how to statically type trivialML
expressions [Pie02]. Logical rules such as the ones below can
be used to type languages stronger and more realistic than
trivialML such as more powerful ML dialects; moreover such

rule-based formalisms even permit to infer types (automat-
ically computing an expression type, as the OCaml system
does), rather than just checking types.

We work with type environments — also called type as-
signments — which is to say mappings from variables to
types (instead of values). We call “Y” the set of all types;
hence type environments will be X Ñ Y functions. We adopt
the same notational conventions for type environments as for
environments.

We restrict our attention to expressions here: the toplevel
part is trivial.

3.1 Typing rules for trivialML expressions
We ignore the distinction between local and global type envi-
ronments in typing rules; such a distinction is uninteresting if
we only deal with expressions, and merging global and local
environments into a single object lets us lighten our notation.

A judgement “Σ $ e : τ ” consists in a type environment,
an expression and a type (with meta-variables); intuitively
it means that under the type environment Σ the expression
e has type τ .

A rule has zero or more judgments as premises, written
above an horizontal line, and exactly one judgment as con-
sequence, written below the line. We write the rule name
between brackets on the left.

A rule should be read top-to-bottom: intuitively it means
that if all the premises are true, then the consequence is also
true.

hack the worldrcIs
Σ $ i : entier

hack the worldrcBs
Σ $ b : booléen

hack the worldrxs
Σrx : τ s $ x : τ

Σ $ e1 : entier Σ $ e2 : entier
ropIIs op P t+, -, *, /u

Σ $ e1 op e2 : entier

Σ $ e1 : entier Σ $ e2 : entier
ropIBs op P t=, <u

Σ $ e1 op e2 : booléen

Σ $ e1 : booléen Σ $ e2 : booléen
ropBBs op P tet, ouu

Σ $ e1 op e2 : booléen

Σrx : τ1s $ e : τ2
rfonctions

Σ $ pfonction x : τ1 -> eq : τ1 -> τ2

Σ $ e1 : τ1 -> τ2 Σ $ e2 : τ1r@s
Σ $ pe1 e2q : τ2

Σ $ e1 : booléen Σ $ e2 : τ Σ $ e3 : τ
rsis

Σ $ si e1 alors e2 sinon e3 : τ

Σ $ e1 : τ1 Σrx : τ1s $ e2 : τ2
rsoits

Σ $ soit x : τ1 � e1 dans e2 : τ2

As shown in Figure 1 rules can be combined into a proof
tree so that the consequence of one becomes a premise of
another, instantiating meta-variables in a consistent way; in
a proof the tree leaves are axioms (rules with zero premises)
and the tree root is the judgement we are proving.

3



rcIs ∅ $ 1 : entier rcIs ∅ $ 2 : entier
ropIBs ∅ $ 1 < 2 : booléen

rxs
tx : booléenu $ x : booléen

rsoits ∅ $ soit x : booléen = 1 < 2 dans x : booléen

hack the world

rcIs ∅ $ 1 : entier

rxs
ta : entieru $ a : entier

rcIs
ta : entieru $ 3 : entier

ropIBs
ta : entieru $ a < 3 : booléen

rsoits ∅ $ soit a : entier = 1 in a < 3 : booléen

Figure 1: Two proof trees, obtained by composing proof rules while instantiating meta-variables in a consistent way; we
obtain the conclusion (the tree root, on the bottom) starting from axioms (tree leafs, on the top). The first tree is the proof
that the expression soit x : booléen = 1 < 2 dans x has type booléen in an empty type environment; the second tree is
the proof that the expression soit x : entier = 1 in a < 3 has type booléen, again in an empty type environment.

All of this is very beautiful, and an interpreter for a com-
plex system such as OCaml could directly use rules like ours
for type inference [DM82, Mil78]; but adding such support
to an interpreter requires some advanced programming tech-
niques such as unification [MM82, Pie02], which we don’t
cover in this course; that’s why in trivialML we only do type
checking instead of type inference, making our task much
simpler.

3.2 Typing by abstract interpretation
Instead of directly using type rules, we will write a function
returning a type from an expression (which includes type
declaration for all binders); our definition of the type func-
tion will closely resemble our definition of the expression
evaluation function, in a technique called abstract inter-
pretation [CC77]. Of course our definition of the typing
function will be inspired by our rules.

Here we take ρ and Γ to stand for type environments, respec-
tively local and global; our typing function Y rr ss , closely
follows the structure of Err ss .

Y rr ss : E Ñ pX Ñ Yq Ñ pX Ñ Yq Ñ Y

Here follows the definition of Y rr ss :

Y rrissρΓ � entier
Y rrbssρΓ � booléen
Y rrxssρΓ � Γrρspxq
Y rre1 op e2ssρΓ � pY rre1ssρΓq opY pY rre2ssρΓq
Y rrfonction x : τ -> essρΓ � τ -> Y rresspρrx : τ sqΓ
Y rre1 e2ssρΓ �
aalet τ1 -> τ2 be Y rre1ssρΓ in
aalet τ3 be Y rre2ssρΓ in
aaτ2 when τ1 � τ3
Y rrsi e1 alors e2 sinon e3ssρΓ �
aalet τ1 be Y rre1ssρΓ in
aalet τ2 be Y rre2ssρΓ in
aalet τ3 be Y rre3ssρΓ in
aaτ2 when τ1 � booléen and τ2 � τ3
Y rrsoit x : τ � e1 dans e2ssρΓ �
aalet τ1 be Y rre1ssρΓ in
aalet τ2 be Y rre2sspρrx : τ sqΓ in
aaτ2 when τ1 � τ

Pay attention to the “when” clauses in the definition above:

of course Y rr ss is a partial function: it is undefined on
ill-typed expressions.

3.2.1 Alternative block typing

Alternative typing definition for soit..dans:

Y rrsoit x : τ � e1 dans e2ssρΓ �
aaY rrpfonction x : τ -> e2q e1ssρΓ

References
[ALSU07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and

Jeffrey D. Ullman, editors. Compilers: principles,
techniques, and tools. Pearson/Addison Wesley,
Boston, MA, USA, second edition, 2007.

[CC77] Patrick Cousot and Radhia Cousot. Abstract in-
terpretation: a unified lattice model for static
analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages, POPL ’77, pages
238–252, New York, NY, USA, 1977. ACM.

[DM82] Luis Damas and Robin Milner. Principal
type-schemes for functional programs. In
Conference Record of the Ninth Annual ACM
Symposium on Principles of Programming
Languages, pages 207–212, 1982. Available at
http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.18.7528.

[Mil78] Robin Milner. A theory of type polymorphism in
programming. Journal of Computer and System
Sciences, 17:348–375, 1978.

[MM82] Alberto Martelli and Ugo Montanari. An effi-
cient unification algorithm. ACM Trans. Pro-
gram. Lang. Syst., 4:258–282, April 1982.

[Pie02] Benjamin C. Pierce. Types and Programming
Languages. The MIT Press, Cambridge, Mas-
sachusetts, 2002.

[Win93] Glynn Winskel. The Formal Semantics of Pro-
gramming Languages. MIT Press, Cambridge,
Massachusetts, 1993.

4


